ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-09-28
    Description: Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arbeitman, Michelle N -- Furlong, Eileen E M -- Imam, Farhad -- Johnson, Eric -- Null, Brian H -- Baker, Bruce S -- Krasnow, Mark A -- Scott, Matthew P -- Davis, Ronald W -- White, Kevin P -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2002 Sep 27;297(5590):2270-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351791" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Cluster Analysis ; Drosophila Proteins/genetics/physiology ; Drosophila melanogaster/embryology/*genetics/*growth & development ; Embryo, Nonmammalian/physiology ; Female ; *Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; *Genes, Insect ; Germ Cells/physiology ; Larva/genetics ; Life Cycle Stages/*genetics ; Male ; Oligonucleotide Array Sequence Analysis ; Organ Specificity ; Pupa/genetics ; RNA, Messenger/genetics/metabolism ; Sex Characteristics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-08-04
    Description: The transcription factor Twist initiates Drosophila mesoderm development, resulting in the formation of heart, somatic muscle, and other cell types. Using a Drosophila embryo sorter, we isolated enough homozygous twist mutant embryos to perform DNA microarray experiments. Transcription profiles of twist loss-of-function embryos, embryos with ubiquitous twist expression, and wild-type embryos were compared at different developmental stages. The results implicate hundreds of genes, many with vertebrate homologs, in stage-specific processes in mesoderm development. One such gene, gleeful, related to the vertebrate Gli genes, is essential for somatic muscle development and sufficient to cause neural cells to express a muscle marker.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Furlong, E E -- Andersen, E C -- Null, B -- White, K P -- Scott, M P -- K22 HG00045-02/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1629-33. Epub 2001 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Howard Hughes Medical Institute, Beckman Center B300, Stanford University School of Medicine, Stanford, CA 94305-5329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486054" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila/*embryology/genetics ; *Drosophila Proteins ; Ectoderm/cytology ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; *Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Genes, Insect ; In Situ Hybridization ; Insect Proteins/genetics ; Membrane Glycoproteins/genetics ; Mesoderm/cytology/*metabolism ; Mutation ; Nuclear Proteins/*genetics/physiology ; Oligonucleotide Array Sequence Analysis ; *Receptors, Cell Surface ; Toll-Like Receptors ; *Transcription Factors ; Transcription, Genetic ; Twist Transcription Factor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-11-06
    Description: Development requires the establishment of precise patterns of gene expression, which are primarily controlled by transcription factors binding to cis-regulatory modules. Although transcription factor occupancy can now be identified at genome-wide scales, decoding this regulatory landscape remains a daunting challenge. Here we used a novel approach to predict spatio-temporal cis-regulatory activity based only on in vivo transcription factor binding and enhancer activity data. We generated a high-resolution atlas of cis-regulatory modules describing their temporal and combinatorial occupancy during Drosophila mesoderm development. The binding profiles of cis-regulatory modules with characterized expression were used to train support vector machines to predict five spatio-temporal expression patterns. In vivo transgenic reporter assays demonstrate the high accuracy of these predictions and reveal an unanticipated plasticity in transcription factor binding leading to similar expression. This data-driven approach does not require previous knowledge of transcription factor sequence affinity, function or expression, making it widely applicable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zinzen, Robert P -- Girardot, Charles -- Gagneur, Julien -- Braun, Martina -- Furlong, Eileen E M -- England -- Nature. 2009 Nov 5;462(7269):65-70. doi: 10.1038/nature08531.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890324" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Artificial Intelligence ; Chromatin Immunoprecipitation ; Conserved Sequence/genetics ; Databases, Genetic ; Drosophila melanogaster/*embryology/*genetics ; Enhancer Elements, Genetic/genetics ; *Gene Expression Regulation, Developmental/genetics ; Genes, Reporter/genetics ; Mesoderm/embryology/metabolism ; *Models, Genetic ; Protein Binding ; Time Factors ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-22
    Description: Developmental enhancers initiate transcription and are fundamental to our understanding of developmental networks, evolution and disease. Despite their importance, the properties governing enhancer-promoter interactions and their dynamics during embryogenesis remain unclear. At the beta-globin locus, enhancer-promoter interactions appear dynamic and cell-type specific, whereas at the HoxD locus they are stable and ubiquitous, being present in tissues where the target genes are not expressed. The extent to which preformed enhancer-promoter conformations exist at other, more typical, loci and how transcription is eventually triggered is unclear. Here we generated a high-resolution map of enhancer three-dimensional contacts during Drosophila embryogenesis, covering two developmental stages and tissue contexts, at unprecedented resolution. Although local regulatory interactions are common, long-range interactions are highly prevalent within the compact Drosophila genome. Each enhancer contacts multiple enhancers, and promoters with similar expression, suggesting a role in their co-regulation. Notably, most interactions appear unchanged between tissue context and across development, arising before gene activation, and are frequently associated with paused RNA polymerase. Our results indicate that the general topology governing enhancer contacts is conserved from flies to humans and suggest that transcription initiates from preformed enhancer-promoter loops through release of paused polymerase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghavi-Helm, Yad -- Klein, Felix A -- Pakozdi, Tibor -- Ciglar, Lucia -- Noordermeer, Daan -- Huber, Wolfgang -- Furlong, Eileen E M -- England -- Nature. 2014 Aug 7;512(7512):96-100. doi: 10.1038/nature13417. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Genome Biology Unit, D-69117 Heidelberg, Germany. ; 1] European Molecular Biology Laboratory, Genome Biology Unit, D-69117 Heidelberg, Germany [2]. ; Swiss Federal Institute of Technology, School of Life Sciences, CH-1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043061" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Chromosomes, Insect/genetics/metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Drosophila melanogaster/embryology/*enzymology/*genetics ; Embryonic Development/*genetics ; Enhancer Elements, Genetic/*genetics ; Gene Expression Regulation, Developmental/genetics ; Genetic Loci/genetics ; Genome, Insect/genetics ; Humans ; Promoter Regions, Genetic/*genetics ; Transcription Initiation, Genetic ; Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-03-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Furlong, Eileen E M -- England -- Nature. 2011 Mar 24;471(7339):458-9. doi: 10.1038/471458a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21430772" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics ; Cell Line ; Chromatin/*genetics/metabolism ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/embryology/*genetics/*growth & development ; *Gene Expression Profiling ; Gene Expression Regulation/genetics ; Genes, Insect/genetics ; Genome, Insect/*genetics ; Polycomb Repressive Complex 1 ; Promoter Regions, Genetic/genetics ; Regulatory Sequences, Nucleic Acid/*genetics ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-22
    Description: Motivation: Circularized Chromosome Conformation Capture (4C) is a powerful technique for studying the spatial interactions of a specific genomic region called the ‘viewpoint’ with the rest of the genome, both in a single condition or comparing different experimental conditions or cell types. Observed ligation frequencies typically show a strong, regular dependence on genomic distance from the viewpoint, on top of which specific interaction peaks are superimposed. Here, we address the computational task to find these specific peaks and to detect changes between different biological conditions. Results: We model the overall trend of decreasing interaction frequency with genomic distance by fitting a smooth monotonically decreasing function to suitably transformed count data. Based on the fit, z -scores are calculated from the residuals, and high z -scores are interpreted as peaks providing evidence for specific interactions. To compare different conditions, we normalize fragment counts between samples, and call for differential contact frequencies using the statistical method DESeq2 adapted from RNA-Seq analysis. Availability and implementation: A full end-to-end analysis pipeline is implemented in the R package FourCSeq available at www.bioconductor.org . Contact: felix.klein@embl.de or whuber@embl.de Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-09-30
    Description: Motivation: RNA sequencing is becoming a standard for expression profiling experiments and many tools have been developed in the past few years to analyze RNA-Seq data. Numerous ‘Bioconductor’ packages are available for next-generation sequencing data loading in R, e.g. ShortRead and Rsamtools as well as to perform differential gene expression analyses, e.g. DESeq and edgeR. However, the processing tasks lying in between these require the precise interplay of many Bioconductor packages, e.g. Biostrings, IRanges or external solutions are to be sought. Results: We developed ‘easyRNASeq’, an R package that simplifies the processing of RNA sequencing data, hiding the complex interplay of the required packages behind a single functionality. Availability: The package is implemented in R (as of version 2.15) and is available from Bioconductor (as of version 2.10) at the URL: http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html , where installation and usage instructions can be found. Contact: delhomme@embl.de
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-09-28
    Description: Developmental enhancers mediate on/off patterns of gene expression in specific cell types at particular stages during metazoan embryogenesis. They typically integrate multiple signals and regulatory determinants to achieve precise spatiotemporal expression. Such enhancers can map quite far—one megabase or more—from the genes they regulate. How remote enhancers relay regulatory information to their target promoters is one of the central mysteries of genome organization and function. A variety of contrasting mechanisms have been proposed over the years, including enhancer tracking, linking, looping, and mobilization to transcription factories. We argue that extreme versions of these mechanisms cannot account for the transcriptional dynamics and precision seen in living cells, tissues, and embryos. We describe emerging evidence for dynamic three-dimensional hubs that combine different elements of the classical models.
    Keywords: Genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2007-01-17
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...