ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant–derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 87 (1990), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Rhodobacter sphaeroides was found to contain two clusters of chromosomally encoded CO2 fixation structural genes. Recent studies indicate that genes within each cluster are contrascribed, suggesting that there is a single long transcript for each cluster. All of the genes have been sequenced, homologies noted, specific mutations obtained, and interesting upstream regulatory sequences found. Site-directed mutagenesis studies of the Anacystis rbcS has begun to provide information relative to RubisCO structure and function. In addition, RubisCO-negative strains of photosynthetic bacteria have been constructed to screen for altered RubisCO sequences.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Company
    Nature biotechnology 4 (1986), S. 138-141 
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] The Rhodopseudomonas sphaeroides form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPC/O) expressed in Escherichia coli has been purified to electrophoretic homogeneity by dye-ligand column chromatography. The form II RuBPC/O made in E. coli exactly co-migrates with the R. sphaeroides ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 114 (1977), S. 197-201 
    ISSN: 1432-072X
    Keywords: Anabaena sp. ; Nitrogen fixation ; Heterocysts ; Cyanobacteria ; Marine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A marine filamentous cyanobacterium capable of rapid growth under N2-fixing conditions has been isolated from the Texas Gulf Coast. This organism appears to be an Anabaena sp. and has been given the strain designation CA. Cultures grown on mineral salts medium bubbled with 1% CO2-enriched air at 42°C show a growth rate of 5.6±0.1 generations per day with molecular nitrogen as the sole nitrogen source. This growth rate is higher than any other reported in the literature to date for heterocystous cyanobacteria growing on N2. Under similar growth conditions, 7.5 mM NH4Cl yields a growth rate of 6.6±0.1 generations per day while 7.5 mM KNO3 allows for a growth rate of 5.8±0.4 generations-day. Nitrogen-fixation rates, as measured by acetylene reduction, show maximum activity values in the range of 50–100 nmoles ethylene produced/minxmg protein. These values compare favorably with those obtained from heterotrophic bacteria and are much higher than values reported for other cyanobacteria. Growth experiments indicate that the organism requires relatively high levels of sodium and grows maximally at 42°C. Because of its high growth rate on N2, this newly isolated organism appears ideal for studying nitrogen metabolism and heterocyst development among the cyanobacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 133 (1982), S. 103-109 
    ISSN: 1432-072X
    Keywords: Anabaena ; Heterocyst ; Phycobiliproteins ; Phycocyanin ; Allophycocyanin ; Hydrogen ; Nitrogenase activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A comparative study has been made on the pigment composition and nitrogenase activity of whole filaments and isolated beterocysts from a mutant strain of Anabaena CA. The whole cell absorption spectra of intact filaments and isolated heterocysts showed close resemblance especially between 550–700 nm region. On a quantitative basis the chlorophyll a content was found almost equal between the vegetative cell and heterocyst but the c-phycocyanin content in the heterocyst was about 1/2 that of the vegetative cell. The purification of the phycobiliprotein on DEAE-cellulose showed the presence of c-phycocyanin (γmax 615 nm) and allophycocyanin (γmax 645 nm, shoulder 620 nm). Isolated heterocysts under H2 showed acetylene reduction rates of 57 nmol C2H4/mg dry wt·min (342 μmol C2H4/mg chl a·h), whereas intact filaments reduced at the rate of 18 nmol C2H4/mg dry wt·min (108 μmol C2H4/mg chl a·h). This rate accounts for 30% recovery of nitrogenase activity in isolated heterocysts compared to whole filaments. The activity was strictly light dependent and was linear under H2 for more than 3 h. Addition of as little as 5% H2 under argon stimulated the C2H2 reductionseveral fold. The acetylene reduction (nitrogenase activity) also showed tolerance to 5% added O2 either under H2 or argon. The results suggest that the heterocyst of Anabaena CA-V is different in some characteristics (viz., higher endogenous C2H2 reduction rate, prolonged activity and higher levels of phycobiliproteins) than those reported in other Anabaena species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 121 (1979), S. 155-159 
    ISSN: 1432-072X
    Keywords: Blue-green algae ; Nitrogen fixation ; Anabaena ; Cyanobacteria ; Marine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Five strains of heterocystous blue-green algae capable of high rates of growth and nitrogenase activity were isolated from shallow coastal environments. Growth of the organisms was characterized with respect to temperature, NaCl concentration in the medium, and nitrogen source. The temperature optima ranged from 35–42°C, and all but one of the strains displayed a requirement for added NaCl. The generation times under N2-fixing conditions were 5.1–5.9 h, and were as low as 3.4 h for growth on NH4Cl. Nitrogenase activity (C2H2 reduction) was high throughout the logarithmic growth phase of each strain. The maximum value observed for one strain was 65.5 nmoles C2H4 produced/mg protein x min, and the average values for the five strains ranged from 24.5–46.7 nmoles C2H4/mg protein x min. The organisms all belong to the genusAnabaena. The growth and nitrogenase activity of these strains are much higher than those of the heterocystous blue-green algae commonly used for investigation of nitrogen metabolism, and they thus should prove to be useful physiological tools. Their prevalence, as judged by the ease of their enrichment and isolation, in bay and estuarine environments suggests that they are important contributors of combined nitrogen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1573-5028
    Keywords: carboxysomes ; evolution ; ribulose 1,5-bisphosphate carboxylase/oxygenase ; Synechococcus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Marine phycoerythrin-containing cyanobacteria are major contributors to the overall productivity of the oceans. The present study indicates that the structural genes of the carbon assimilatory system are unusually arranged and possess a unique primary structure compared to previously studied cyanobacteria. Southern blot analyses of Synechococcus sp. strain WH7803 chromosomal DNA digests, using the ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit gene from Synechococcus sp. strain PCC6301 as a heterologous probe, revealed the presence of a 6.4 kb HindIII fragment that was detectable at only low stringency. Three complete open reading frames (ORFs) were detected within this fragment. Two of these ORFs potentially encode the Synechococcus sp. strain WH7803 rbcL and rbcS genes. The third ORF, situated immediately upstream from rbcL, potentially encodes a homologue of the ccmK gene from Synechococcus sp. strain PCC7942. The deduced amino acid sequences of each of these ORFs are more similar to homologues among the β/γ purple bacteria than to existing cyanobacterial homologues and phylogenetic analysis of the Rubisco large and small subunit sequences confirmed an unexpected relationship to sequences from among the β/γ purple bacteria. This is the first instance in which the possibility has been considered that an operon encoding three genes involved in carbon fixation may have been laterally transferred from a purple bacterium. Analysis of mRNA extracted from cells grown under diel conditions indicated that rbcL, rbcS and ccmK were regulated at the transcriptional level; specifically rubisco transcripts were highest during the midday period, decreased at later times during the light period and eventually reached a level where they were all but undetectable during the dark period. Primer extension analysis indicated that the ccmK, rbcL and rbcS genes were co-transcribed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Marine biotechnology 2 (2000), S. 429-436 
    ISSN: 1436-2236
    Keywords: Key words: diel patterns, transcription, rbcL, cyanobacterium, prymnesiophyte.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract: Diel patterns of rbcL transcription, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity, and whole cell carbon fixation were compared in the marine cyanobacterium Synechococcus PCC7002 and the chromophytic prymnesiophyte Pavlova gyrans. Both organisms were grown on a 12:12 light-dark cycle, with the light period starting at 0700. Strong diel patterns in these three aspects of carbon fixation occurred in both organisms, with maximal levels in the light period and minima in the dark. In Synechococcus, maximal rbcL transcript abundance occurred at noon and was followed by rapid disappearance. RubisCO enzyme activity and whole cell carbon fixation were elevated at 1600, and they disappeared over the next 8 hours. In contrast, in Pavlova, rbcL transcript abundance was maximal at 1600, and it was maintained at 66% of this level into the dark period (2000). Whole cell carbon fixation and RubisCO activity were elevated into the dark period (at 2000), being 77% and 81%, respectively, of the maximum. A similar diel pattern of cyanobacterial-like and chromophyte-like rbcL transcription has been observed in natural phytoplankton populations. These studies suggest that chromophytes are more adapted to take advantage of carbon fixation late in the day than cyanophytes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1573-5028
    Keywords: activase ; CO2 fixation ; cyanobacteria ; rca gene ; Rubisco
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract There was no discernible effect after incubating recombinant Anabaena Rubisco and carboxyarabinitol 1-phosphate with the product of the Anabaena rca gene. Since the unactivated cyanobacterial Rubisco is not readily inhibited by ribulose 1,5-bisphosphate and fallover is not observed, a genetic basis for the function of the Rubisco activase-like gene (rca) was sought. The monocistronic rca gene was inactivated in vivo and resulting mutant strains of A. variabilis were found to be incapable of synthesizing immunologically detected RCA protein. The requirement for the product of the rca gene in the light was further examined by measuring Rubisco activity in permeabilized whole cells of wild-type and rca mutant strains at different light intensities. In a 1% CO2-air atmosphere, inactivation of rca reduced the ability of A. variabilis to elevate Rubisco activity under high light (73 μmol quanta m−2 s−1), but had little effect under low light (8 μmol m−2 s−1). For air-grown cultures, differences in the rates exhibited by the wild-type and rca mutant to fully activate Rubisco during a whole-cell assay were enhanced by increases in light intensity. The significance of the rca mutation was underlined by effects on growth as, unlike the wild-type, growth rates did not increase after cells transferred from low to high light intensities. Higher exogenous CO2 concentrations (1%) were required to sustain a normal growth rate for the A. variabilis rca mutant. When grown in air levels of CO2, the rca mutant not only needed longer times to double in cell density but also exhibited greatly diminished Rubisco activity compared with the wild-type strain. Despite the unusual properties of cyanobacterial Rubisco, these results suggest a physiological role for the product of the rca gene in maximizing the activity of Rubisco in heterocystous cyanobacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 60 (1999), S. 1-28 
    ISSN: 1573-5079
    Keywords: biodiversity ; carboxylase ; genetic selection ; photosynthesis ; regulation ; specificity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Marine and terrestrial photosynthetic and chemoautotrophic microorganisms assimilate considerable amounts of carbon dioxide. Like green plastids, the predominant means by which this process occurs is via the Calvin-Benson-Bassham reductive pentose phosphate pathway, where ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) plays a paramount role. Recent findings indicate that this enzyme is subject to diverse means of control, including specific and elaborate means to guarantee its high rate and extent of synthesis. In addition, powerful and specific means to regulate Rubisco activity is a characteristic feature of many microbial systems. In many respects, the diverse properties of microbial Rubisco enzymes suggest interesting strategies to elucidate the molecular basis of CO2/O2 specificity, the ‘holy grail’ of Rubisco biochemistry. These systems thus provide, as the title suggests, ‘different perspectives’ to this fundamental problem. These include vast possibilities for imaginative biological selection using metabolically versatile organisms with well-defined genetic transfer capabilities to solve important issues of Rubisco specificity and molecular control. This review considers the major issues of Rubisco biochemistry and regulation in photosynthetic microoganisms including proteobacteria, cyanobacteria, marine nongreen algae, as well as other interesting prokaryotic and eukaryotic microbial systems recently shown to possess this enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...