ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-07-12
    Description: New circuits have been designed and fabricated with operating frequencies over 325 GHz. In order to measure S-parameters of these circuits, an extensive process of wafer dicing and packaging, and waveguide transition design, fabrication, and packaging would be required. This is a costly and time-consuming process before the circuit can be tested in waveguide. The new probes and calibration procedures will simplify the testing process. New on-wafer probes, and a procedure for their calibration, have been developed that allow fast and inexpensive S-parameter characterization of circuits in the 325 -508 -GHz frequency band. The on-wafer probes transition from rectangular waveguide to coplanar waveguide probe tips with 40- m nominal signal-to-ground pin pitch so as to allow for probing circuits on a wafer. The probes with bias tees have been optimized for minimal insertion loss and maximum return loss when placed on 50-ohm structures to allow for calibration. The calibration process has been developed using the Thru-Reflect-Line Agilent algorithm with JPL determined calibration structures and calibration coefficients for the algorithm. This new test capability is presently unique to JPL. With it, researchers will be able to better develop circuits such as low-noise amplifiers, power amplifiers, multipliers, and mixers for heterodyne receivers in the 325-508-GHz frequency band for remote sensing/spectroscopy.
    Keywords: Man/System Technology and Life Support
    Type: NPO-47575 , NASA Tech Brief, May 2011; 7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-12
    Description: The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (〉500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack.
    Keywords: Man/System Technology and Life Support
    Type: NPO-48287 , NASA Tech Briefs, November 2012; 9-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-12
    Description: A 180-GHz interferometric imager uses compact receiver modules, combined high- and low-gain antennas, and ASIC (application specific integrated circuit) correlator technology, enabling continuous, all-weather observations of water vapor with 25-km resolution and 0.3-K noise in 15 minutes of observation for numerical weather forecasting and tropical storm prediction. The GeoSTAR-II prototype instrument is broken down into four major subsystems: the compact, low-noise receivers; sub-array modules; IF signal distribution; and the digitizer/correlator. Instead of the single row of antennas adopted in GeoSTAR, this version has four rows of antennas on a coarser grid. This dramatically improves the sensitivity in the desired field of view. The GeoSTAR-II instrument is a 48-element, synthetic, thinned aperture radiometer operating at 165-183 GHz. The instrument has compact receivers integrated into tiles of 16 elements in a 4x4 arrangement. These tiles become the building block of larger arrays. The tiles contain signal distribution for bias controls, IF signal, and local oscillator signals. The IF signals are digitized and correlated using an ASIC correlator to minimize power consumption. Previous synthetic aperture imagers have used comparatively large multichip modules, whereas this approach uses chip-scale modules mounted on circuit boards, which are in turn mounted on the distribution manifolds. This minimizes the number of connectors and reduces system mass. The use of ASIC technology in the digitizers and correlators leads to a power reduction close to an order of magnitude.
    Keywords: Man/System Technology and Life Support
    Type: NPO-47995 , NASA Tech Briefs, November 2011; 22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-12
    Description: An integrated waveguide-to-MMIC (monolithic microwave integrated circuit) chip operating in the 300-GHz range is designed to operate well on high-permittivity semiconductor substrates typical for an MMIC amplifier, and allows a wider MMIC substrate to be used, enabling integration with larger MMICs (power amplifiers). The waveguide-to- CBCPW (conductor-backed coplanar waveguide) transition topology is based on an integrated dipole placed in the E-plane of the waveguide module. It demonstrates low loss and good impedance matching. Measurement and simulation demonstrate that the loss of the transition and waveguide loss is less than 1-dB over a 340-to-380-GHz bandwidth. A transition is inserted along the propagation direction of the waveguide. This transition uses a planar dipole aligned with the maximum E-field of the TE10 waveguide mode as an inter face between the waveguide and the MMIC. Mode conversion between the coplanar striplines (CPS) that feed the dipole and the CBCPW transmission line is accomplished using a simple air-bridge structure. The bottom side ground plane is truncated at the same reference as the top-side ground plane, leaving the end of the MMIC suspended in air.
    Keywords: Man/System Technology and Life Support
    Type: NPO-46237 , NASA Tech Briefs, December 2009; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews the requirements for improved coherent detector arrays for use in continuum and spectral line applications. With detectors approaching fundamental limits, large arrays offer the only path to sensitivity improvement. Monolithic Microwave Integrated Circuit (MMIC) technology offers a straightforward path to massive focal plane millimeter wave arrays: The technology will readily support continuum imagers, polarimeters and spectral line receivers from 30-110 GHz. Science programs, particularly large field blind surveys will benefit from simultaneous observations of hundreds or thousands of pixels 1000 element array is competitive with a cost less than $2M.
    Keywords: Optics
    Type: Future Instrumentation Workshop for the Green Bank Telescope, Green Bank West Virginia, Spetember 7-9, 2006; Sep 07, 2006 - Sep 09, 2006; Green Bank, West Virginia; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-12
    Description: A device has been developed for coherent detection of the polarization of the cosmic microwave background (CMB). A two-stage amplifier has been designed that covers 75-110 GHz. The device uses the emerging 35-nm InP HEMT technology recently developed at Northrop Grumman Corporation primarily for use at higher frequencies. The amplifier has more than 18 dB gain and less than 35 K noise figure across the band. These devices have noise less than 30 K at 100 GHz. The development started with design activities at JPL, as well as characterization of multichip modules using existing InP. Following processing, a test campaign was carried out using single-chip modules at 100 GHz. Successful development of the chips will lead to development of multichip modules, with simultaneous Q and U Stokes parameter detection. This MMIC (monolithic microwave integrated circuit) amplifier takes advantage of performance improvements intended for higher frequencies, but in this innovation are applied at 90 GHz. The large amount of available gain ultimately leads to lower possible noise performance at 90 GHz.
    Keywords: Man/System Technology and Life Support
    Type: NPO-46627 , NASA Tech Briefs, May 2010; 12-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-12
    Description: Weather forecasting, hurricane tracking, and atmospheric science applications depend on humidity sounding of atmosphere. Current instruments provide these measurements from groundbased, airborne, and low Earth orbit (LEO) satellites by measuring radiometric temperature on the flanks of the 183-GHz water vapor line. Miniature, low-noise receivers have been designed that will enable these measurements from a geostationary, thinned array sounder, which is based on hundreds of low-noise receivers that convert the 180-GHz signal directly to baseband in-phase and in-quadrature signals for digitization and correlation. The developed receivers provide a noise temperature of 450 K from 165 to 183 GHz (NF = 4.1 dB), and have a mass of 3 g while consuming 24 mW of power. These are the most sensitive broadband I-Q receivers at this frequency range that operate at room temperature, and are significantly lower in mass and power consumption than previously reported receivers.
    Keywords: Electronics and Electrical Engineering
    Type: NPO-47442 , NASA Tech Briefs, November 2010; 9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-12
    Description: A single-pixel prototype of a W-band detector module with a digital back-end was developed to serve as a building block for large focal-plane arrays of monolithic millimeter-wave integrated circuit (MMIC) detectors. The module uses low-noise amplifiers, diode-based mixers, and a WR10 waveguide input with a coaxial local oscillator. State-of-the-art InP HEMT (high electron mobility transistor) MMIC amplifiers at the front end provide approximately 40 dB of gain. The measured noise temperature of the module, at an ambient temperature of 300 K, was found to be as low as 450 K at 95 GHz. The modules will be used to develop multiple instruments for astrophysics radio telescopes, both on the ground and in space. The prototype is being used by Stanford University to characterize noise performance at cryogenic temperatures. The goal is to achieve a 30-50 K noise temperature around 90 GHz when cooled to a 20 K ambient temperature. Further developments include characterization of the IF in-phase (I) and quadrature (Q) signals as a function of frequency to check amplitude and phase; replacing the InP low-noise amplifiers with state-of-the-art 35-nm-gate-length NGC low-noise amplifiers; interfacing the front-end module with a digital back-end spectrometer; and developing a scheme for local oscillator and IF distribution in a future array. While this MMIC is being developed for use in radio astronomy, it has the potential for use in other industries. Applications include automotive radar (both transmitters and receivers), communication links, radar systems for collision avoidance, production monitors, ground-penetrating sensors, and wireless personal networks.
    Keywords: Man/System Technology and Life Support
    Type: NPO-46522 , NASA Tech Briefs, December 2009; 14-15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-12
    Description: Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.
    Keywords: Man/System Technology and Life Support
    Type: NPO-47307 , NASA Tech Briefs, December 2010; 6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-12
    Description: A monolithic microwave integrated circuit (MMIC) receiver can be used as a building block for next-generation radio astronomy instruments that are scalable to hundreds or thousands of pixels. W-band (75-110 GHz) low-noise receivers are needed for radio astronomy interferometers and spectrometers, and can be used in missile radar and security imagers. These receivers need to be designed to be mass-producible to increase the sensitivity of the instrument. This innovation is a prototyped single-sideband MMIC receiver that has all the receiver front-end functionality in one small and planar module. The planar module is easy to assemble in volume and does not require tuning of individual receivers. This makes this design low-cost in large volumes.
    Keywords: Man/System Technology and Life Support
    Type: NPO-47348 , NASA Tech Briefs, December 2010; 6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...