ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 195 (1962), S. 367-368 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] There have been four previous attempts to detect the deuterium line, and all have given negative results3-6. The most recent of these, at Jodrell Bank, set an upper limit on Njy/N-R of 1/4,000 in the direction of the Cassiopeia radio source; this value is slightly higher than the terrestrial ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1962-11-01
    Print ISSN: 0004-637X
    Electronic ISSN: 1538-4357
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1966-02-01
    Print ISSN: 0004-637X
    Electronic ISSN: 1538-4357
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1962-07-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: The four noise parameters of cryogenically cooled HEMTs have been investigated. Two different HEMT structures, with and without a spacer layer, were tested. The noise parameters of both structures were similar at room temperature, while they were dramatically different at cryogenic temperatures. The minimum noise temperatures measured at 8.4 GHz were 75 + or 5 K at room temperature and 8.5 + or - 1.5 K at the temperature of 12.5 K. The cryogenic performance is the best ever observed for field-effect transistors.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: IEEE Transactions on Electron Devices (ISSN 0018-9383); ED-33; 218-223
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: Millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We present the design for a broadband, sensitive, heterodyne spectrometer under development for the Caltech Submillimeter Observatory (CSO). The 180-300 GHz double-sideband design uses a single SIS device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss should be no more than 1-2 dB with mixer noise temperatures across the band within 10 K of the quantum limit. The single-sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and the first use on the CSO should occur in the spring of 2003.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A quad-ridged, flared horn achieving nearly constant beamwidth and excellent return loss over a 6:1 frequency bandwidth is presented. Radiation pattern measurements show excellent beamwidth stability from 2 to 12 GHz. Measured return loss is 〉 10 dB over the entire band and 〉 15 dB from 2.5 to 11 GHz. Using a custom physical optics code, system performance of a radio telescope is computed and predicted performance is average 70% aperture efficiency and 10 Kelvin of antenna noise temperature.
    Keywords: Electronics and Electrical Engineering
    Type: 2011 IEEE International Symposium on Antennas and Propagation; Jul 03, 2011 - Jul 08, 2011; Spokane, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The Goldstone Apple Valley Radio Telescope (GAVRT) is an outreach project, a partnership involving NASA's Jet Propulsion Laboratory (JPL), the Lewis Center for Educational Research (LCER), and the Apple Valley Unified School District near the NASA Goldstone deep space communication complex. This educational program currently uses a 34-meter antenna, DSS12, at Goldstone for classroom radio astronomy observations via the Internet. The current program utilizes DSS12 in two narrow frequency bands around S-band (2.3 GHz) and X-band (8.45 GHz), and is used by a training program involving a large number of secondary school teachers and their classrooms. To expand the program, a joint JPL/LCER project was started in mid-2006 to retrofit an additional existing 34-meter beam-waveguide antenna, DSS28, with wideband feeds and receivers to cover the 0.5-to- 14-GHz frequency bands. The DSS28 antenna has a 34-meter diameter main reflector, a 2.54-meter subreflector, and a set of beam waveguide mirrors surrounded by a 2.43-meter tube. The antenna was designed for high power and a narrow frequency band around 7.2 GHz. The performance at the low end of the frequency band desired for the educational program would be extremely poor if the beam waveguide system was used as part of the feed system. Consequently, the 34-meter antenna was retrofitted with a tertiary offset mirror placed at the vertex of the main reflector. The tertiary mirror can be rotated to use two wideband feeds that cover the 0.5-to-14-GHz band. The earlier designs for both GAVRT and the DSN only used narrow band feeds and consequently, only covered a small part of the S- and X-band frequencies. By using both a wideband feed and wideband amplifiers, the entire band from 0.5 to 14 GHz is covered, expanding significantly the science activities that can be studied using this system.
    Keywords: Astronomy
    Type: NPO-46668 , NASA Tech Briefs, April 2012; 24-25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: In principle, millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We are applying modem design tools, such as 3D electromagnetic simulators and Caltech's SuperMix SIS analysis package, to develop a new generation of waveguide SIS mixers with very broad RF and IF bandwidths. Our initial design consists of a double-sideband mixer targeted for the 180- 300 GHz band that uses a single SIS junction excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output band, limited by the MMIC low-noise IF preamplifier, is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss is predicted to be no more than 1-2 dB (single-sideband) with mixer noise temperatures across the band within 10 Kelvin of the quantum limit. The single-sideband receiver noise temperature goal is 70 Kelvin. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and a demonstration on the CSO should occur in the spring of 2003.
    Keywords: Solid-State Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The X-band (8.41 GHz) frequency currently used for deep space telecommunications is too narrow (50 MHz) to support future high rate missions. Because of this NASA has decided to transition to Ka-band (32 GHz) frequencies. As weather effects cause much larger fluctuations on Ka-band than on X-band, the traditional method of using a few dBs of margin to cover these fluctuations is wasteful of power for Ka-band; therefore, a different operations concept is needed for Ka-band links. As part of the development of the operations concept for Ka-band, NASA has implemented a fully functioning Ka-band communications suite on its Mars Reconnaissance Orbiter (MRO). This suite will be used during the primary science phase to develop and refine the Ka-band operations concept for deep space missions. In order to test the functional readiness of the spacecraft and the Deep Space Network's (DSN) readiness to support the demonstration activities a series of passes over DSN 34-m Beam Waveguide (BWG) antennas were scheduled during the cruise phase of the mission. MRO was launched on August 12, 2005 from Kennedy Space Center, Cape Canaveral, Florida, USA and went into Mars Orbit on March 10, 2006. A total of ten telemetry demonstration and one high gain antenna (HGA) calibration passes were allocated to the Ka-band demonstration. Furthermore, a number of "shadow" passes were also scheduled where, during a regular MRO track over a Ka-band capable antenna, Ka-band was identically configured as the X-band and tracked by the station. In addition, nine Ka-band delta differential one way ranging ((delta)DOR) passes were scheduled. During these passes, the spacecraft and the ground system were put through their respective paces. Among the highlights of these was setting a single day record for data return from a deep space spacecraft (133 Gbits) achieved during one 10-hour pass; achieving the highest data rate ever from a planetary mission (6 Mbps) and successfully demonstrating Ka-band DDOR. In addition, DSN performed well. However, there are concerns with the active pointing of the Ka-band antennas as well as delivery of the monitor data from the stations. The spacecraft also presented challenges not normally associated with planetary missions mostly because of its very high equivalent isotropic radiated power (EIRP). This caused problems in accurately evaluating the in-flight EIRP of the spacecraft which led to difficulties evaluating the quality of the HGA calibration data. These led to the development of additional measurement techniques that could be used for future high-power deep space missions.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: SpaceOps Conference, Rome, Italy, June 19 - 23, 2006; Jun 19, 2006 - Jun 23, 2006; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...