ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2000-03-10
    Description: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sala, O E -- Chapin, F S 3rd -- Armesto, J J -- Berlow, E -- Bloomfield, J -- Dirzo, R -- Huber-Sanwald, E -- Huenneke, L F -- Jackson, R B -- Kinzig, A -- Leemans, R -- Lodge, D M -- Mooney, H A -- Oesterheld, M -- Poff, N L -- Sykes, M T -- Walker, B H -- Walker, M -- Wall, D H -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1770-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Instituto de Investigaciones Fisiologicas y Ecologicas vinculadas a la Agricultura, Faculty of Agronomy, University of Buenos Aires, Avenida San Martin 4453, Buenos Aires 1417, Argentina. sala@ifeva.edu.ar〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710299" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Animals ; Atmosphere ; Carbon Dioxide ; Climate ; *Ecosystem ; Fresh Water ; Models, Biological ; Nitrogen
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2005-03-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pandolfi, J M -- Jackson, J B C -- Baron, N -- Bradbury, R H -- Guzman, H M -- Hughes, T P -- Kappel, C V -- Micheli, F -- Ogden, J C -- Possingham, H P -- Sala, E -- New York, N.Y. -- Science. 2005 Mar 18;307(5716):1725-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Marine Studies and Department of Earth Sciences, University of Queensland, St. Lucia, QLD 4072, Australia. j.pandolfi@uq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15774744" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthozoa ; Biodiversity ; Biomass ; Conservation of Natural Resources ; *Ecosystem ; Eutrophication ; Fishes ; Food Chain ; Greenhouse Effect ; International Cooperation ; Public Policy ; United States ; Water Pollution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2003-08-16
    Description: Degradation of coral reef ecosystems began centuries ago, but there is no global summary of the magnitude of change. We compiled records, extending back thousands of years, of the status and trends of seven major guilds of carnivores, herbivores, and architectural species from 14 regions. Large animals declined before small animals and architectural species, and Atlantic reefs declined before reefs in the Red Sea and Australia, but the trajectories of decline were markedly similar worldwide. All reefs were substantially degraded long before outbreaks of coral disease and bleaching. Regardless of these new threats, reefs will not survive without immediate protection from human exploitation over large spatial scales.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pandolfi, John M -- Bradbury, Roger H -- Sala, Enric -- Hughes, Terence P -- Bjorndal, Karen A -- Cooke, Richard G -- McArdle, Deborah -- McClenachan, Loren -- Newman, Marah J H -- Paredes, Gustavo -- Warner, Robert R -- Jackson, Jeremy B C -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):955-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paleobiology, MRC-121, National Museum of Natural History, Post Office Box 37012, Smithsonian Institution, Washington, DC 20013-7012, USA. pandolfi.john@nmnh.si.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/*growth & development ; Conservation of Natural Resources ; Culture ; *Ecosystem ; Humans ; Population Dynamics ; Principal Component Analysis ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2002-12-10
    Description: There is debate concerning the most effective conservation of marine biodiversity, especially regarding the appropriate location, size, and connectivity of marine reserves. We describe a means of establishing marine reserve networks by using optimization algorithms and multiple levels of information on biodiversity, ecological processes (spawning, recruitment, and larval connectivity), and socioeconomic factors in the Gulf of California. A network covering 40% of rocky reef habitat can fulfill many conservation goals while reducing social conflict. This quantitative approach provides a powerful tool for decision-makers tasked with siting marine reserves.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sala, Enric -- Aburto-Oropeza, Octavio -- Paredes, Gustavo -- Parra, Ivan -- Barrera, Juan C -- Dayton, Paul K -- New York, N.Y. -- Science. 2002 Dec 6;298(5600):1991-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, CA 92093, USA. esala@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12471258" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; California ; Computer Simulation ; *Conservation of Natural Resources ; *Ecosystem ; Environment ; Fisheries ; Fishes ; Invertebrates ; *Models, Biological ; *Seawater
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018
    Description: Although projections of climate change anticipating increases in precipitation variability and extreme events are part of the public and scientific narrative, the effects of interannual precipitation variance per se on ecosystem functioning have been largely understudied. This global synthesis indicated that increased precipitation coefficient of variation decreased primary productivity in drylands globally. Arid ecosystems showed a positive response, while mesic ecosystems showed a negative response dominating the global response. Nonlinear productivity responses to precipitation provide mechanisms for contrasting responses across ecosystems. These findings have potential implications for the global carbon cycle and the provision of ecosystem services in drylands. Abstract Climate‐change assessments project increasing precipitation variability through increased frequency of extreme events. However, the effects of interannual precipitation variance per se on ecosystem functioning have been largely understudied. Here, we report on the effects of interannual precipitation variability on the primary production of global drylands, which include deserts, steppes, shrublands, grasslands, and prairies and cover about 40% of the terrestrial earth surface. We used a global database that has 43 datasets, which are uniformly distributed in parameter space and each has at least 10 years of data. We found (a) that at the global scale, precipitation variability has a negative effect on aboveground net primary production. (b) Expected increases in interannual precipitation variability for the year 2,100 may result in a decrease of up to 12% of the global terrestrial carbon sink. (c) The effect of precipitation interannual variability on dryland productivity changes from positive to negative along a precipitation gradient. Arid sites with mean precipitation under 300 mm/year responded positively to increases in precipitation variability, whereas sites with mean precipitation over 300 mm/year responded negatively. We propose three complementary mechanisms to explain this result: (a) concave‐up and concave‐down precipitation–production relationships in arid vs. humid systems, (b) shift in the distribution of water in the soil profile, and (c) altered frequency of positive and negative legacies. Our results demonstrated that enhanced precipitation variability will have direct impacts on global drylands that can potentially affect the future terrestrial carbon sink.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2006-11-04
    Description: Human-dominated marine ecosystems are experiencing accelerating loss of populations and species, with largely unknown consequences. We analyzed local experiments, long-term regional time series, and global fisheries data to test how biodiversity loss affects marine ecosystem services across temporal and spatial scales. Overall, rates of resource collapse increased and recovery potential, stability, and water quality decreased exponentially with declining diversity. Restoration of biodiversity, in contrast, increased productivity fourfold and decreased variability by 21%, on average. We conclude that marine biodiversity loss is increasingly impairing the ocean's capacity to provide food, maintain water quality, and recover from perturbations. Yet available data suggest that at this point, these trends are still reversible.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worm, Boris -- Barbier, Edward B -- Beaumont, Nicola -- Duffy, J Emmett -- Folke, Carl -- Halpern, Benjamin S -- Jackson, Jeremy B C -- Lotze, Heike K -- Micheli, Fiorenza -- Palumbi, Stephen R -- Sala, Enric -- Selkoe, Kimberley A -- Stachowicz, John J -- Watson, Reg -- New York, N.Y. -- Science. 2006 Nov 3;314(5800):787-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1. bworm@dal.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17082450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Conservation of Natural Resources ; Databases, Factual ; *Ecosystem ; Eukaryota ; *Fisheries ; *Fishes ; Forecasting ; Invertebrates ; Oceans and Seas ; Plants ; Population Dynamics ; Seafood ; Seawater ; Water Pollution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-05-01
    Description: The evolution of grasses using C4 photosynthesis and their sudden rise to ecological dominance 3 to 8 million years ago is among the most dramatic examples of biome assembly in the geological record. A growing body of work suggests that the patterns and drivers of C4 grassland expansion were considerably more complex than originally assumed. Previous research has benefited substantially from dialog between geologists and ecologists, but current research must now integrate fully with phylogenetics. A synthesis of grass evolutionary biology with grassland ecosystem science will further our knowledge of the evolution of traits that promote dominance in grassland systems and will provide a new context in which to evaluate the relative importance of C4 photosynthesis in transforming ecosystems across large regions of Earth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Edwards, Erika J -- Osborne, Colin P -- Stromberg, Caroline A E -- Smith, Stephen A -- C4 Grasses Consortium -- Bond, William J -- Christin, Pascal-Antoine -- Cousins, Asaph B -- Duvall, Melvin R -- Fox, David L -- Freckleton, Robert P -- Ghannoum, Oula -- Hartwell, James -- Huang, Yongsong -- Janis, Christine M -- Keeley, Jon E -- Kellogg, Elizabeth A -- Knapp, Alan K -- Leakey, Andrew D B -- Nelson, David M -- Saarela, Jeffery M -- Sage, Rowan F -- Sala, Osvaldo E -- Salamin, Nicolas -- Still, Christopher J -- Tipple, Brett -- New York, N.Y. -- Science. 2010 Apr 30;328(5978):587-91. doi: 10.1126/science.1177216.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA. erika_edwards@brown.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20431008" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Carbon Dioxide/metabolism ; Climate ; *Ecosystem ; Fossils ; Genetic Speciation ; Geography ; *Photosynthesis ; Phylogeny ; *Poaceae/classification/genetics/growth & development/metabolism ; Temperature ; Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-11-03
    Description: Corrigendum: Lytic to temperate switching of viral communities Nature 539, 7627 (2016). doi:10.1038/nature19335 Authors: B. Knowles, C. B. Silveira, B. A. Bailey, K. Barott, V. A. Cantu, A. G. Cobián-Güemes, F. H. Coutinho, E. A. Dinsdale, B. Felts, K. A. Furby, E. E. George, K. T. Green, G. B. Gregoracci, A. F. Haas, J. M. Haggerty, E. R. Hester, N. Hisakawa, L. W. Kelly, Y. W. Lim, M. Little, A. Luque, T. McDole-Somera, K. McNair, L. S. de Oliveira, S. D. Quistad, N. L. Robinett, E. Sala, P. Salamon, S. E. Sanchez, S. Sandin, G. G. Z. Silva, J. Smith, C. Sullivan, C. Thompson, M. J. A. Vermeij, M. Youle, C. Young, B. Zgliczynski, R. Brainard, R. A. Edwards, J. Nulton, F. Thompson & F. Rohwer Nature531, 466–470 (2016); doi:10.1038/nature17193In this Article, the ‘Predator–prey modelling’ section of the Methods shows Lotka–Volterra equations. Although these equations are meant to present a basic Lotka–Volterra model, the term ‘N/K’ in the
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-03-17
    Description: Microbial viruses can control host abundances via density-dependent lytic predator-prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus 'more microbes, fewer viruses'.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knowles, B -- Silveira, C B -- Bailey, B A -- Barott, K -- Cantu, V A -- Cobian-Guemes, A G -- Coutinho, F H -- Dinsdale, E A -- Felts, B -- Furby, K A -- George, E E -- Green, K T -- Gregoracci, G B -- Haas, A F -- Haggerty, J M -- Hester, E R -- Hisakawa, N -- Kelly, L W -- Lim, Y W -- Little, M -- Luque, A -- McDole-Somera, T -- McNair, K -- de Oliveira, L S -- Quistad, S D -- Robinett, N L -- Sala, E -- Salamon, P -- Sanchez, S E -- Sandin, S -- Silva, G G Z -- Smith, J -- Sullivan, C -- Thompson, C -- Vermeij, M J A -- Youle, M -- Young, C -- Zgliczynski, B -- Brainard, R -- Edwards, R A -- Nulton, J -- Thompson, F -- Rohwer, F -- England -- Nature. 2016 Mar 24;531(7595):466-70. doi: 10.1038/nature17193. Epub 2016 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA. ; Biology Institute, Rio de Janeiro Federal University, Av. Carlos Chagas Filho 373, Rio de Janeiro, Rio de Janeiro 21941-599, Brazil. ; Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA. ; Hawaii Institute of Marine Biology, University of Hawaii at Manoa, 46-007 Lilipuna Road, Kaneohe, Hawaii 96744, USA. ; Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA. ; Rainbow Rock, Ocean View, Hawaii 96737, USA. ; Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, 6525HP Nijmegen, The Netherlands. ; Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA. ; Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, California 92037, USA. ; Department of Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Marine Sciences Department, Sao Paulo Federal University - Baixada Santista, Av. Alm. Saldanha da Gama, 89, Santos, Sao Paulo 11030-400, Brazil. ; National Geographic Society, 1145 17th St NW, Washington D.C. 20036, USA. ; CARMABI Foundation, Piscaderabaai z/n, Willemstad, Curacao, Netherlands Antilles. ; Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098XH Amsterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982729" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/physiology/*virology ; Bacteriophages/pathogenicity/physiology ; Coral Reefs ; *Ecosystem ; Genes, Viral/genetics ; *Host-Pathogen Interactions ; Lysogeny ; Models, Biological ; Virulence/genetics ; Viruses/genetics/isolation & purification/*pathogenicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-12-20
    Description: There is uncertainty in the magnitude and direction of changes in precipitation associated with climate change, and ecosystem responses are also uncertain. Multi-year periods of above- and below-average rainfall may foretell consequences of changes in rainfall regime. We compiled long-term aboveground net primary productivity (ANPP) and precipitation (PPT) data for eight North American grasslands, and quantified relationships between ANPP and PPT at each site, and in 1-3 year periods of above- and below-average rainfall for mesic, semiarid cool and semiarid warm grassland types. Our objectives were to improve understanding of PPT-ANPP relationships in above- and below-average years, and to contrast the importance of current conditions, prior-year legacies, and emergent responses to ANPP during sequences of above- and below-average years to provide insights into ANPP dynamics associated with changing climatic conditions. We found differences in PPT-ANPP relationships in above- and below-average years compared to long-term site averages, and variation in ANPP not explained by PPT totals that likely is attributed to legacy effects. The correlation between ANPP and current- and prior-year conditions changed from year to year throughout multi-year periods, with some legacy effects declining, and new responses emerging. Thus, ANPP in every year was influenced by sequences of conditions that varied across grassland types and climates. Most importantly, the influence of prior year ANPP often increased with the length of multi-year periods, whereas the influence of the amount of PPT declined, but often not until after the first above- or below-average year. Although it is not fully clear how a directional change in the frequency of above- and below-average years could impose a persistent change in grassland ANPP, our results emphasize the importance of legacy effects on productivity for sequences of above- versus below-average years, and illustrate the utility of long-term data to examine these patterns. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...