ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2021-10-09
    Description: (1) Aim: To immunohistochemically evaluate the effect of a volume-stable collagen scaffold (VCMX) on periodontal regeneration. (2) Methods: In eight beagle dogs, acute two-wall intrabony defects were treated with open flap debridement either with VCMX (test) or without (control). After 12 weeks, eight defects out of four animals were processed for paraffin histology and immunohistochemistry. (3) Results: All defects (four test + four control) revealed periodontal regeneration with cementum and bone formation. VCMX remnants were integrated in bone, periodontal ligament (PDL), and cementum. No differences in immunohistochemical labeling patterns were observed between test and control sites. New bone and cementum were labeled for bone sialoprotein, while the regenerated PDL was labeled for periostin and collagen type 1. Cytokeratin-positive epithelial cell rests of Malassez were detected in 50% of the defects. The regenerated PDL demonstrated a larger blood vessel area at the test (14.48% ± 3.52%) than at control sites (8.04% ± 1.85%, p = 0.0007). The number of blood vessels was higher in the regenerated PDL (test + control) compared to the pristine one (p = 0.012). The cell proliferative index was not statistically significantly different in pristine and regenerated PDL. (4) Conclusions: The data suggest a positive effect of VCMX on angiogenesis and an equally high cell turnover in the regenerated and pristine PDL. This VCMX supported periodontal regeneration in intrabony defects.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 263 (1991), S. 311-324 
    ISSN: 1432-0878
    Keywords: Dental root surface ; Periodontal fiber fringe ; Dentino-cemental junction ; Electron microscopy ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The development of acellular extrinsic fiber cementum (AEFC) has never before been studied in human teeth. We have therefore examined the initiation of AEFC in the form of a collagenous fiber fringe and its attachment to the underlying dentinal matrix, in precisely selected, erupting human premolars with roots developed to 50%–60% of their final length. Freshly extracted teeth were prefixed in Karnovsky's fixative, decalcified in EDTA and subdivided into about 10 blocks each, cut from the mesial and distal root surfaces, vertical to and along the root axis. The blocks were postfixed in osmium tetroxide, embedded in Epon and cut for light- and electron-microscopic investigation. Starting at the advancing edge of the root, within a region extending about 1 mm coronal to this edge, fibroblast-like cells were seen closely covering the external root surface. Along the first 100 μm from the root edge, these cells extended cytoplasmic processes and contacted the dentinal collagen fibrils. Between these cells and the dentinal matrix, new collagen fibrils and very short collagen fibers gradually developed. Within the second 100 μm from the root edge, this resulted in the formation of a cell-fiber fringe network. Newly formed fibers of the fringe were directly attached to the non-mineralized matrix containing dentinal collagen fibrils and could be distinguished from the latter by differences in fibril orientation. During the process of dentin mineralization, the transitional zone between the fiber-fringe base and the dentinal matrix, i.e., the future dentino-cemental junction, also mineralized. It is suggested that this fiber fringe is the base of AEFC, which later increases in thickness by fiber extension and subsequent mineralization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 263 (1991), S. 325-336 
    ISSN: 1432-0878
    Keywords: Cementum ; Fiber fringe ; Periodontal ligament fibers ; Dentino-cemental junction ; Electron microscopy ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The present study describes for the first time the development of early acellular extrinsic fiber cementum (AEFC) until its establishment on human teeth. Precisely selected premolars with roots developed to 50%–100% of their final length were prefixed in Karnovsky's fixative and most of them were decalcified in EDTA. Their roots were subdivided into about 10 blocks each, cut from the mesial and distal root surfaces. Following osmication, these blocks were embedded in Epon and sectioned for light-and transmission electron microscopy. Some blocks were cut non-demineralized. From semithin stained sections, the density of the collagenous fiber fringe protruding from the root surface was measured by using the Videoplan-system. After initiation of this fiber fringe and its attachment to the dentinal root surface followed by mineralization, the fringe gradually increased in length and subsequently became mineralized. Fringe elongation and the advancement of the mineralization front appeared to progress proportionally. Thus, in all stages of AEFC development, a short fiber fringe covered the mineralized AEFC. Its density remained constant, irrespective of AEFC thickness. The latter gradually increased and reached an early maximum of 15–20 μm in the cervical region. At this stage, the AEFC fringe appeared to fuse with the future dentogingival or other collagen fibers of the tooth supporting apparatus. Mineralization of the fringe commenced with isolated, spherical or globular centers, which later fused with the mineralization front and became incorporated in AEFC.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 274 (1993), S. 343-352 
    ISSN: 1432-0878
    Keywords: Teeth ; Cementum ; Autoradiography ; Cementoblasts ; Fibroblasts ; Matrix production ; In vitro analysis ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The present study describes the dynamic process of both acellular extrinsic (AEFC) and acellular/cellular intrinsic fiber cementum (AIFC/CIFC) matrix production on growing human teeth. Selected erupting maxillary and mandibular premolars with roots grown to about 70%–95% of their final length were placed in organ culture immediately following extraction. Twelve teeth for short-time labeling were pulse-incubated for 15 min in medium containing 3H-proline and chased for various times in order to follow the migration and secretion of the tracer. Eight teeth for long-time incubation were labeled continuously for 5 h before being chased for 1–8 days in order to label cementum matrix accumulation. After decalcification in ethylene diaminetetraacetic acid (EDTA), their roots were subdivided into about 20 slices each. Epon-embedded sections were prepared for light- and electron-microsopic as well as autoradiographic examination. During CIFC-formation, cementoblasts revealed high intracytoplasmic silver grain concentrations within the first hour after 3H-proline administration. The release of the tracer occurred between 60 to 120 min after administration. After 2 h, cementoblasts and the cementum matrix appeared to be labeled about equally. After 5 h, most of the labeled proteins appeared to be localized in the cementoid. Silver grains increased in number over the cementum matrix from 5–24 h. Very high intracellular grain concentrations within very large cementoblasts corresponded to regions of rapid cementum formation. Tracer-halos around entrapped cells lend support to a multipolar mode of matrix production during CIFC-initiation. The fate of the tracer during the development of early AEFC-matrix was less clear. However, fibroblasts revealed dense intracytoplasmic grain accumulations within the first hour after 3H-proline administration. Thereafter, the tracer localization was vague. This indistinct grain localization reflected the particular mode of AEFC-matrix production characterized by addition of new fibril segments to pre-existing fibers of a collagenous fringe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 267 (1992), S. 321-335 
    ISSN: 1432-0878
    Keywords: Teeth ; Cementum ; Cementoblasts ; Matrix production ; Electron microscopy ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The present study describes the formative process of the initiation of cellular intrinsic fiber cementum (CIFC) in still growing human teeth. From 29 premolars and molars with incomplete roots developed to 60–90% of their final length, 8 premolars (with roots formed to three quarters of their final length) were selected for electron-microscopic investigation. All teeth were clinically intact and prefixed in Karnovsky's fixative immediately after extraction. Most of them were decalcified in ethylene diaminetetraacetic acid (EDTA), and the apical part of the roots was divided axially into mesial and distal portions that were subdivided in about 5 slices each. Following osmication and embedding in Epon, these blocks were cut for light- and electron-microscopic examination. In addition, 5 teeth with incomplete roots were freed from organic material and processed for scanning electron microscopy. It was found that CIFC-initiation commenced very close to the advancing root edge and resulted in a rapid cementum thickening. Thereafter, appositional growth continued on the already established cementum surface. Large, basophilic and rough endoplasmic reticulum-rich cementoblasts, some of which became cementocytes, were responsible for both fast and slow CIFC-formation. The CIFC-matrix was free of Sharpey's fibers and composed of more or less organized intrinsic collagen fibrils, in part fibril bundles, that ran roughly parallel to the root surface. Initially, the cementum fibrils intermingled with those of the dentinal collagen fibrils, which were not yet mineralized. This boundary subsequently underwent calcification. The development of collagen fibril bundles and their extracellular arrangement were associated with cytoplasmic processes probably involved in fibril formation and fibril assembly. Many cementoblasts contained intracytoplasmic, membrane-bounded collagen fibrils, which probably were related to fibril formation rather than degradation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...