ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • 1
    Publication Date: 2019-07-13
    Description: The Advanced Microwave Scanning Radiometer 2 (AMSR2) is part of the Global Change Observation Mission-Water (GCOM-W). AMSR2 has filled the gap in passive microwave observations left by the loss of the Advanced Microwave Scanning RadiometerEarth Observing System (AMSR-E) after almost 10 years of observations. Both missions provide brightness temperature observations that are used to retrieve soil moisture estimates at the near surface. A merged AMSR-E and AMSR2 data product will help build a consistent long-term dataset; however, before this can be done, it is necessary to conduct a thorough validation and assessment of the AMSR2 soil moisture products. This study focuses on the validation of the AMSR2 soil moisture products by comparison with in situ reference data from a set of core validation sites around the world. A total of three soil moisture products that rely on different algorithms were evaluated; the Japan Aerospace Exploration Agency (JAXA) soil moisture algorithm, the Land Parameter Retrieval Model (LPRM), and the Single Channel Algorithm (SCA). JAXA, SCA and LPRM soil moisture estimates capture the overall climatological features. The spatial features of the three products have similar overall spatial structure. The JAXA soil moisture product shows a lower dynamic range in the retrieved soil moisture with a satisfactory performance matrix when compared to in situ observations (ubRMSE0.059 m3m3, Bias-0.083 m3m3, R0.465). The SCA performs well over low and moderately vegetated areas (ubRMSE0.053 m3m3, Bias-0.039 m3m3, R0.549). The LPRM product has a large dynamic range compared to in situ observations with a wet bias (ubRMSE0.094 m3m3, Bias0.091 m3m3, R0.577). Some of the error is due to the difference in observation depth between the in situ sensors (5 cm) and satellite estimates (1 cm). Results indicate that overall the JAXA and SCA have the best performance based upon the metrics considered.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47016 , IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (ISSN 1939-1404) (e-ISSN 2151-1535); 11; 1; 209-219
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Satellite-based passive microwave remote sensing typically involves a scanning antenna that makes measurements at irregularly spaced locations. These locations can change on a day to day basis. Soil moisture products derived from satellite-based passive microwave remote sensing are usually resampled to a fixed Earth grid that facilitates their use in applications. In many cases the grid size is finer than the actual spatial resolution of the observation, and often this difference is not well understood by the user. Here, this issue was examined for the Soil Moisture Active Passive (SMAP) enhanced version of the passive-based soil moisture product, which has a grid size of 9-km and a nominal spatial resolution of 33-km. In situ observations from core validation sites were used to compute comparison metrics. For sites that satisfied the established reliability and scaling criteria, the impact of validating the 9-km grid product with in situ data collected over a 9-km versus a 33-km domain was very small for the sites studied (0.039 cu. m/cu. m unbiased root mean square difference for the 9-km case versus 0.037 cu. m/cu. m for the 33-km case). This result does not mean that the resolution of the product is 9-km but that for the conditions studied here the soil moisture estimated from in situ observations over 9-km is a close approximation of the soil moisture estimated from in situ observations over the 33-km resolution. The implication is that using the enhanced SMAP product at its grid resolution of 9-km should not introduce large errors in most applications.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN52965 , Remote Sensing of Environment (ISSN 0034-4257) (e-ISSN 1879-0704); 207; 65-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-07
    Description: The NASA SMAP (Soil Moisture Active Passive) mission provides a global coverage of soil moisture measurements based on its L-band microwave radiometer every 2-3 days at about 40 km resolution. The soil moisture retrieval algorithms model the brightness temperature as a function of soil moisture, surface conditions and vegetation. External data sources inform the algorithms about the surface conditions and vegetation, which enable the retrieval of soil moisture. The inversion process contains uncertainties related to radiometer measurements, forward model assumptions and ancillary data sources. This study focuses on the uncertainties that depend on the seasonal evolution of the surface conditions and vegetation. This study compares the SMAP and core validation site (CVS) soil moisture values over a period of three years to extract the evolution of performance metrics over time. The analysis showed that most CVS that include managed agriculture exhibit significant time-dependent seasonal bias. This bias was linked to seasonal temperature cycle, which is a proxy to several features that can cause seasonally dependent errors in the SMAP product.
    Keywords: Earth Resources and Remote Sensing; Geophysics
    Type: GSFC-E-DAA-TN68899 , IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019); Jul 28, 2019 - Aug 02, 2019; Yokohama; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...