ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9)
  • Underwater acoustics  (6)
  • Surface waves and free oscillations  (3)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2003. It is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 4 (2003): 1092, doi:10.1029/2002GC000485.
    Description: The primary goal of the Ocean Seismic Network Pilot Experiment (OSNPE) was to learn how to make high quality broadband seismic measurements on the ocean bottom in preparation for a permanent ocean seismic network. The experiment also had implications for the development of a capability for temporary (e.g., 1 year duration) seismic experiments on the ocean floor. Equipment for installing, operating and monitoring borehole observatories in the deep sea was also tested including a lead-in package, a logging probe, a wire line packer and a control vehicle. The control vehicle was used in three modes during the experiment: for observation of seafloor features and equipment, for equipment launch and recovery, and for power supply and telemetry between ocean bottom units and the ship. The OSNPE which was completed in June 1998 acquired almost four months of continuous data and it demonstrated clearly that a combination of shallow buried and borehole broadband sensors could provide comparable quality data to broadband seismic installations on islands and continents. Burial in soft mud appears to be adequate at frequencies below the microseism peak. Although the borehole sensor was subject to installation noise at low frequencies (0.6 to 50 mHz), analysis of the OSNPE data provides new insights into our understanding of ocean bottom ambient noise. The OSNPE results clearly demonstrate the importance of sediment borne shear modes in ocean bottom ambient noise behavior. Ambient noise drops significantly at high frequencies for a sensor placed just at the sediment basalt interface. At frequencies above the microseism peak, there are two reasons that ocean bottom stations have been generally regarded as noisier than island or land stations: ocean bottom stations are closer to the noise source (the surface gravity waves) and most ocean bottom stations to date have been installed on low rigidity sediments where they are subject to the effects of shear wave resonances. When sensors are placed in boreholes in basement the performance of ocean bottom seismic stations approaches that of continental and island stations. A broadband borehole seismic station should be included in any real-time ocean bottom observatory.
    Description: This work was sponsored by the National Science Foundation (NSF Grant Numbers: OCE-9522114, OCE-9523541 and OCE-9819439) with additional support from Incorporated Research Institutions for Seismology (IRIS), Joint Oceanographic Institutions, Inc. (JOI Contract No: 12-94), Scripps Institution of Oceanography, a Mellon Grant from Woods Hole Oceanographic Institution, and the Earthquake Research Institute at the University of Tokyo (Visiting Professorship for RAS).
    Keywords: Ocean Seismic Network Pilot Experiment (OSNPE) ; Seismology ; Instruments and techniques ; Body wave propagation ; Surface waves and free oscillations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 2963663 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: This report describes the development of a facility for recording time-varying computer graphics on video tape. The primary purpose of the facility is to produce animation sequences of ocean and seafloor acoustic wave fields from output of the synthetic seismogram numerical model FINDIF, and to record them on convenient portable VHS video tapes. The facility utilizes a suite of computer programs called AFRAME, and an Abekas model A60 digital video disk which is connected to the modeling computer and to broadcast quality video recording equipment.
    Description: This work was carried out under ONR Grant #N00014-90-J-1493
    Keywords: Seismograms ; Acoustic models ; Underwater acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: The Ocean Bottom Seismometer Augmentation to the Philippine Sea Experiment (OBSAPS, April-May, 2011, R/V Revelle) addresses the coherence and depth dependence of deep-water ambient noise and signals. During the 2004 NPAL Experiment in the North Pacific Ocean, in addition to predicted ocean acoustic arrivals and deep shadow zone arrivals, we observed "deep seafloor arrivals" that were dominant on the seafloor Ocean Bottom Seismometer (OBS) (at about 5000m depth) but were absent or very weak on the Distributed Vertical Line Array (DVLA) (above 4250m depth). These "deep seafloor arrivals" (DSFA) are a new class of arrivals in ocean acoustics possibly associated with seafloor interface waves. The OBSAPS cruise had three major research goals: a) identification and analysis of DSFAs occurring at short (1/2CZ) ranges in the 50 to 400Hz band, b) analysis of deep sea ambient noise in the band 0.03 to 80Hz, and c) analysis of the frequency dependence of BR and SRBR paths as a function of frequency. On OBSAPS we deployed a fifteen element VLA from 12 to 852m above the seafloor, four short-period OBSs and two long-period OBSs and carried out an 11.5day transmission program using a J15-3 acoustic source.
    Description: Funding was provided by the Office of Naval Research under Contract Nos. N00014-10-1-0994 and N00014-10-1-0987.
    Keywords: Underwater acoustics ; Ambient sounds ; Roger Revelle (Ship) Cruise RR1106
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: A study was carried out to quantify the level of numerical noise in numerical scattering chamber (NSC) calculations and to compare these noise levels with signal levels of body waves, interface waves and ambient noise. The amplitudes of signal and noise in snapshots from the numerical scattering chamber were quantified at 50 and 65 periods for a few reference models. Models with homogeneous subseafloor structure were studied to determine the level of numerical noise; models with a wavenumber-correlation length product of one were examined to determine signal levels. Models were run with both Higdon and telegraph equation absorbing boundaries since the numerical noise within the grid depends on the boundary formulation. Amplitudes were measured along data traces obtained at a grid depth of 3.33 λw and at the seafloor. Forward traveling head waves had typical amplitudes of ±125 but may reached ±250 near the direct wave. Diffraction amplitudes were observed up to ±300. Stoneley wave amplitudes ranged from ±800 up to ±20,000. Numerical noise levels were less than ±25 in most areas of the water and less than ±350 along most of the seafloor. Regardless of the absorbing boundary type, however, there was a region of noise extending up to 15 λw behind the first seafloor reflection at 3.33 λw in which noise levels range from ±100 up to ±600. In this region it is difficult to resolve signal from systematic numerical noise.
    Description: This work was carried out under ONR Grant #N00014-90-J-1493
    Keywords: Underwater acoustics ; Scattering
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: The Ocean Bottom Seismometer Augmentation in the North Pacific Experiment (OBSANP, June-July, 2013, R/V Melville) addresses the coherence and depth dependence of deep-water ambient noise and signals. During the 2004 NPAL Experiment in the North Pacific Ocean, in addition to predicted ocean acoustic arrivals and deep shadow zone arrivals, we observed "deep seafloor arrivals" (DSFA) that were dominant on the seafloor Ocean Bottom Seismometer (OBS) (at about 5000m depth) but were absent or very weak on the Distributed Vertical Line Array (DVLA) (above 4250m depth). At least a subset of these arrivals correspond to bottomdiffracted surface-reflected (BDSR) paths from an out-of-plane seamount. BDSR arrivals are present throughout the water column, but at depths above the conjugate depth are obscured by ambient noise and PE predicted arrivals. On the 2004 NPAL/LOAPEX experiment BDSR paths yielded the largest amplitude seafloor arrivals for ranges from 500 to 3200km. The OBSANP experiment tests the hypothesis that BDSR paths contribute to the arrival structure on the deep seafloor even at short ranges (from near zero to 4-1/2CZ). The OBSANP cruise had three major research goals: a) identification and analysis of DSFA and BDSR arrivals occurring at short (1/2CZ) ranges in the 50 to 400Hz band, b) analysis of deep sea ambient noise in the band 0.03 to 80Hz, and c) analysis of the frequency dependence of BR and SRBR paths. On OBSANP we deployed a 32 element VLA from 12 to 1000m above the seafloor, eight short-period OBSs and four long-period OBSs and carried out a 15day transmission program using a J15-3 acoustic source.
    Description: Funding was provided by the Office of Naval Research under contract #'s N00014-10-1-0987 and N00014-10-1-0510
    Keywords: Melville (Ship) Cruise MV1308 ; Underwater acoustics ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: On the Ocean Bottom Seismometer Augmentation to the Philippine Sea Experiment (OBSAPS, April-May, 2011, R/V Revelle), a VLA and six OBSs were deployed to listen to an active acoustic source, a J15-3. This report describes the hardware and software used to control and record the acoustic transmissions from the source. Some significant features of the system are: 1) The system transmits general user-defined source functions, such as Msequences (.SIO files). 2) In addition to controlling the source waveform, the system also records six real-time channels in binary files with user-selectable lengths: the monitor hydrophone mounted near the source, the power amplifier voltage and current, the depth of the source, sonobuoy data (when deployed) and an IRIG-B time reference. Files are output in .AUV format with a precision GPS-based time stamp in the file name. 3) The transmission start time along with ADC and DAC sample rates are disciplined to GPS time. 4) A convenient, Labview based, user interface provides real-time source control and monitoring. 5) The software provides parsing and logging of gyro and GPS NMEA sentences. The system, which was based on an earlier system from Scripps MPL, worked well on OBSAPS and is available for future projects.
    Description: Funding was provided by the Office of Naval Research under Contract Nos. N00014-10-1-0994 and N00014-10-1-0987.
    Keywords: Underwater acoustics ; Ambient sounds
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2016. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 205 (2016): 785-795, doi:10.1093/gji/ggw036.
    Description: An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency–slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ∼150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn–air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.
    Description: PDB, AD and PG were supported by NSF Grant PLR 1246151. RAS was supported by NSF Grant PLR-1246416. DAW, RA and AN were supported under NSF Grants PLR-1142518, 1141916 and 1142126, respectively. PDB also received support from the California Department of Parks and Recreation, Division of Boating and Waterways under contract 11-106-107.
    Keywords: Glaciology ; Surface waves and free oscillations ; Seismic anisotropy ; Antarctica
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: This report gives an overview of the analysis that was done on Deep Seafloor Arrivals since they were initially presented in Stephen et al (2009). All of the NPAL04/LOAPEX (North Pacific Acoustic Laboratory, 2004/ Long Range Ocean Acoustic Propagation Experiment) data on three ocean bottom seismometers (OBSs) at ~5,000m depth and the deepest element of the deep vertical line array (DVLA) at 4250m depth has been analyzed. A distinctive pattern of late arrivals was observed on the three OBSs for transmissions from T500 to T2300. The delays of these arrivals with respect to the parabolic equation predicted (PEP) path were the same for all ranges from 500 to 2300km, indicating that the delay was introduced near the receivers. At 500km range the same arrival was observed throughout the water column on the DVLA. We show that arrivals in this pattern converted from a PEP path to a bottom-diffracted surface reflected (BDSR) path at an off-geodesic seamount.
    Description: Funding was provided by the Office of Naval Research under Contract No. N00014-10-1-0510.
    Keywords: Underwater acoustics ; Ambient sounds
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Poster S11B-2359 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9-13 Dec.
    Description: Microseism noise, generated by wave-wave interaction of ocean surface gravity waves and peaking between 0.1 and 0.5Hz, is the largest amplitude, continuous (acceleration) vibration on earth in the seismic band from 0.0001 to 10Hz. Although microseisms have been studied extensively over the past seventy years, significant issues remain regarding their excitation and propagation. In a recent paper Bromirski et al (JGR, 2013) point out that there is an important distinction between microseisms generated in deep and shallow water. Most microseisms observed on continents are generated in shallow water near coastlines. Microseisms generated in deep water are observed on seafloor sensors but do not transition readily to continents. The Ocean Bottom Seismometer Augmentation to the Philippine Sea (OBSAPS) Experiment has provided a unique opportunity to study the excitation and propagation of microseism noise (from 0.05 to 1.0Hz) in the oceans by combining ocean bottom seismometer observations with co-located and simultaneous observations of the acoustic field in the ocean. The depth dependence of the acoustic field in the ocean is used to distinguish between ocean acoustic modes and acoustic and elastic pseudo-Rayleigh waves as propagation mechanisms for microseism energy.
    Description: OBSAPS experiment was funded by ONR.
    Keywords: Seismic monitoring and test-ban treaty verification ; Seismicity and tectonics ; Surface waves and free oscillations
    Repository Name: Woods Hole Open Access Server
    Type: Presentation
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...