ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-09-05
    Description: Cyclin E binds and activates the cyclin-dependent kinase Cdk2 and catalyzes the transition from the G1 phase to the S phase of the cell cycle. The amount of cyclin E protein present in the cell is tightly controlled by ubiquitin-mediated proteolysis. Here we identify the ubiquitin ligase responsible for cyclin E ubiquitination as SCFFbw7 and demonstrate that it is functionally conserved in yeast, flies, and mammals. Fbw7 associates specifically with phosphorylated cyclin E, and SCFFbw7 catalyzes cyclin E ubiquitination in vitro. Depletion of Fbw7 leads to accumulation and stabilization of cyclin E in vivo in human and Drosophila melanogaster cells. Multiple F-box proteins contribute to cyclin E stability in yeast, suggesting an overlap in SCF E3 ligase specificity that allows combinatorial control of cyclin E degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koepp, D M -- Schaefer, L K -- Ye, X -- Keyomarsi, K -- Chu, C -- Harper, J W -- Elledge, S J -- R01 AG011085/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):173-7. Epub 2001 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533444" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Breast Neoplasms/genetics/metabolism ; *CDC2-CDC28 Kinases ; *Cell Cycle ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cyclin E/*metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/metabolism ; Drosophila Proteins ; Drosophila melanogaster ; *F-Box Proteins ; Humans ; Mice ; Molecular Sequence Data ; Peptide Synthases/chemistry/genetics/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; RNA, Double-Stranded ; Recombinant Fusion Proteins/metabolism ; SKP Cullin F-Box Protein Ligases ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Transfection ; Tumor Cells, Cultured ; *Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-04-24
    Description: Control of cyclin levels is critical for proper cell cycle regulation. In yeast, the stability of the G1 cyclin Cln1 is controlled by phosphorylation-dependent ubiquitination. Here it is shown that this reaction can be reconstituted in vitro with an SCF E3 ubiquitin ligase complex. Phosphorylated Cln1 was ubiquitinated by SCF (Skp1-Cdc53-F-box protein) complexes containing the F-box protein Grr1, Rbx1, and the E2 Cdc34. Rbx1 promotes association of Cdc34 with Cdc53 and stimulates Cdc34 auto-ubiquitination in the context of Cdc53 or SCF complexes. Rbx1, which is also a component of the von Hippel-Lindau tumor suppressor complex, may define a previously unrecognized class of E3-associated proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skowyra, D -- Koepp, D M -- Kamura, T -- Conrad, M N -- Conaway, R C -- Conaway, J W -- Elledge, S J -- Harper, J W -- AG11085/AG/NIA NIH HHS/ -- GM41628/GM/NIGMS NIH HHS/ -- GM54137/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):662-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anaphase-Promoting Complex-Cyclosome ; Animals ; Carrier Proteins/chemistry/*metabolism ; Cell Cycle Proteins/metabolism ; Cell Line ; *Cullin Proteins ; Cyclins/*metabolism ; F-Box Proteins ; Fungal Proteins/*metabolism ; Ligases/metabolism ; Molecular Sequence Data ; Peptide Synthases/*metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; S-Phase Kinase-Associated Proteins ; SKP Cullin F-Box Protein Ligases ; Saccharomyces cerevisiae/metabolism ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Ubiquitin-Conjugating Enzymes ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-04-24
    Description: The von Hippel-Lindau (VHL) tumor suppressor gene is mutated in most human kidney cancers. The VHL protein is part of a complex that includes Elongin B, Elongin C, and Cullin-2, proteins associated with transcriptional elongation and ubiquitination. Here it is shown that the endogenous VHL complex in rat liver also includes Rbx1, an evolutionarily conserved protein that contains a RING-H2 fingerlike motif and that interacts with Cullins. The yeast homolog of Rbx1 is a subunit and potent activator of the Cdc53-containing SCFCdc4 ubiquitin ligase required for ubiquitination of the cyclin-dependent kinase inhibitor Sic1 and for the G1 to S cell cycle transition. These findings provide a further link between VHL and the cellular ubiquitination machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kamura, T -- Koepp, D M -- Conrad, M N -- Skowyra, D -- Moreland, R J -- Iliopoulos, O -- Lane, W S -- Kaelin, W G Jr -- Elledge, S J -- Conaway, R C -- Harper, J W -- Conaway, J W -- AG-11085/AG/NIA NIH HHS/ -- GM41628/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):657-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213691" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Cycle ; Cell Cycle Proteins/metabolism ; Cell Line ; *Cullin Proteins ; Cyclin-Dependent Kinase Inhibitor Proteins ; *F-Box Proteins ; Fungal Proteins/metabolism ; *Ligases ; Liver ; Male ; Molecular Sequence Data ; Peptide Synthases/*metabolism ; Proteins/*metabolism ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/metabolism ; S-Phase Kinase-Associated Proteins ; SKP Cullin F-Box Protein Ligases ; Saccharomyces cerevisiae/metabolism ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Transcription Factors/metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...