ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-12-13
    Description: Derived features of a new boreosphenidan mammal from the Lower Cretaceous Yixian Formation of China suggest that it has a closer relationship to metatherians (including extant marsupials) than to eutherians (including extant placentals). This fossil dates to 125 million years ago and extends the record of marsupial relatives with skeletal remains by 50 million years. It also has many foot structures known only from climbing and tree-living extant mammals, suggesting that early crown therians exploited diverse niches. New data from this fossil support the view that Asia was likely the center for the diversification of the earliest metatherians and eutherians during the Early Cretaceous.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luo, Zhe-Xi -- Ji, Qiang -- Wible, John R -- Yuan, Chong-Xi -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1934-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Carnegie Museum of Natural History, Pittsburgh, PA 15213, USA. luoz@carnegiemuseums.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671295" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Animals ; *Biological Evolution ; Biomechanical Phenomena ; Bone and Bones/anatomy & histology ; China ; Dentition ; *Fossils ; Geography ; Locomotion ; *Mammals/anatomy & histology/classification/physiology ; *Marsupialia/anatomy & histology/classification/physiology ; Paleodontology ; Paleontology ; Phylogeny ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-19
    Description: The deep-water Avalon biota (about 579 to 565 million years old) is often regarded as the earliest-known fossil assemblage with macroscopic and morphologically complex life forms. It has been proposed that the rise of the Avalon biota was triggered by the oxygenation of mid-Ediacaran deep oceans. Here we report a diverse assemblage of morphologically differentiated benthic macrofossils that were preserved largely in situ as carbonaceous compressions in black shales of the Ediacaran Lantian Formation (southern Anhui Province, South China). The Lantian biota, probably older than and taxonomically distinct from the Avalon biota, suggests that morphological diversification of macroscopic eukaryotes may have occurred in the early Ediacaran Period, perhaps shortly after the Marinoan glaciation, and that the redox history of Ediacaran oceans was more complex than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Xunlai -- Chen, Zhe -- Xiao, Shuhai -- Zhou, Chuanming -- Hua, Hong -- England -- Nature. 2011 Feb 17;470(7334):390-3. doi: 10.1038/nature09810.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. xlyuan@nigpas.ac.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21331041" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Biota ; *Body Size ; China ; Eukaryota/*classification/cytology/isolation & purification ; *Fossils ; Geologic Sediments ; History, Ancient ; Oceans and Seas ; Oxidation-Reduction ; Phylogeny ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-05
    Description: Crop domestications are long-term selection experiments that have greatly advanced human civilization. The domestication of cultivated rice (Oryza sativa L.) ranks as one of the most important developments in history. However, its origins and domestication processes are controversial and have long been debated. Here we generate genome sequences from 446 geographically diverse accessions of the wild rice species Oryza rufipogon, the immediate ancestral progenitor of cultivated rice, and from 1,083 cultivated indica and japonica varieties to construct a comprehensive map of rice genome variation. In the search for signatures of selection, we identify 55 selective sweeps that have occurred during domestication. In-depth analyses of the domestication sweeps and genome-wide patterns reveal that Oryza sativa japonica rice was first domesticated from a specific population of O. rufipogon around the middle area of the Pearl River in southern China, and that Oryza sativa indica rice was subsequently developed from crosses between japonica rice and local wild rice as the initial cultivars spread into South East and South Asia. The domestication-associated traits are analysed through high-resolution genetic mapping. This study provides an important resource for rice breeding and an effective genomics approach for crop domestication research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Xuehui -- Kurata, Nori -- Wei, Xinghua -- Wang, Zi-Xuan -- Wang, Ahong -- Zhao, Qiang -- Zhao, Yan -- Liu, Kunyan -- Lu, Hengyun -- Li, Wenjun -- Guo, Yunli -- Lu, Yiqi -- Zhou, Congcong -- Fan, Danlin -- Weng, Qijun -- Zhu, Chuanrang -- Huang, Tao -- Zhang, Lei -- Wang, Yongchun -- Feng, Lei -- Furuumi, Hiroyasu -- Kubo, Takahiko -- Miyabayashi, Toshie -- Yuan, Xiaoping -- Xu, Qun -- Dong, Guojun -- Zhan, Qilin -- Li, Canyang -- Fujiyama, Asao -- Toyoda, Atsushi -- Lu, Tingting -- Feng, Qi -- Qian, Qian -- Li, Jiayang -- Han, Bin -- England -- Nature. 2012 Oct 25;490(7421):497-501. doi: 10.1038/nature11532. Epub 2012 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23034647" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/*history ; Breeding/history ; Crops, Agricultural/classification/*genetics/growth & development ; *Evolution, Molecular ; Genetic Variation/*genetics ; Genome, Plant/*genetics ; Genomics ; *Geographic Mapping ; History, Ancient ; Oryza/classification/*genetics/growth & development ; Phylogeny ; Polymorphism, Single Nucleotide/genetics ; Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-02-25
    Description: A docodontan mammaliaform from the Middle Jurassic of China possesses swimming and burrowing skeletal adaptations and some dental features for aquatic feeding. It is the most primitive taxon in the mammalian lineage known to have fur and has a broad, flattened, partly scaly tail analogous to that of modern beavers. We infer that docodontans were semiaquatic, convergent to the modern platypus and many Cenozoic placentals. This fossil demonstrates that some mammaliaforms, or proximal relatives to modern mammals, developed diverse locomotory and feeding adaptations and were ecomorphologically different from the majority of generalized small terrestrial Mesozoic mammalian insectivores.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ji, Qiang -- Luo, Zhe-Xi -- Yuan, Chong-Xi -- Tabrum, Alan R -- New York, N.Y. -- Science. 2006 Feb 24;311(5764):1123-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Science, Nanjing University, Nanjing 200017, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16497926" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Size ; Bone and Bones/anatomy & histology ; China ; Dentition ; Ear Ossicles/anatomy & histology ; Environment ; Feeding Behavior ; *Fossils ; Hair/anatomy & histology ; *Mammals/anatomy & histology/classification/physiology ; Mandible/anatomy & histology ; Paleodontology ; Paleontology ; Phylogeny ; Ribs/anatomy & histology ; Skull/anatomy & histology ; Spine/anatomy & histology ; Swimming ; Tail/anatomy & histology ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-06-17
    Description: Three-dimensional specimens of the volant fossil bird Gansus yumenensis from the Early Cretaceous Xiagou Formation of northwestern China demonstrate that this taxon possesses advanced anatomical features previously known only in Late Cretaceous and Cenozoic ornithuran birds. Phylogenetic analysis recovers Gansus within the Ornithurae, making it the oldest known member of the clade. The Xiagou Formation preserves the oldest known ornithuromorph-dominated avian assemblage. The anatomy of Gansus, like that of other non-neornithean (nonmodern) ornithuran birds, indicates specialization for an amphibious life-style, supporting the hypothesis that modern birds originated in aquatic or littoral niches.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉You, Hai-Lu -- Lamanna, Matthew C -- Harris, Jerald D -- Chiappe, Luis M -- O'connor, Jingmai -- Ji, Shu-An -- Lu, Jun-Chang -- Yuan, Chong-Xi -- Li, Da-Qing -- Zhang, Xing -- Lacovara, Kenneth J -- Dodson, Peter -- Ji, Qiang -- New York, N.Y. -- Science. 2006 Jun 16;312(5780):1640-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16778053" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/*anatomy & histology/*classification/physiology ; Bone and Bones/*anatomy & histology ; China ; Environment ; Feathers/anatomy & histology ; Femur/anatomy & histology ; Flight, Animal ; *Fossils ; Hindlimb/anatomy & histology ; Humerus/anatomy & histology ; Locomotion ; Phylogeny ; Spine/anatomy & histology ; Toes/anatomy & histology ; Water ; Wings, Animal/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-10-10
    Description: The definitive mammalian middle ear (DMME) is defined by the loss of embryonic Meckel's cartilage and disconnection of the middle ear from the mandible in adults. It is a major feature distinguishing living mammals from nonmammalian vertebrates. We report a Cretaceous trechnotherian mammal with an ossified Meckel's cartilage in the adult, showing that homoplastic evolution of the DMME occurred in derived therian mammals, besides the known cases of eutriconodonts. The mandible with ossified Meckel's cartilage appears to be paedomorphic. Reabsorption of embryonic Meckel's cartilage to disconnect the ear ossicles from the mandible is patterned by a network of genes and signaling pathways. This fossil suggests that developmental heterochrony and gene patterning are major mechanisms in homplastic evolution of the DMME.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ji, Qiang -- Luo, Zhe-Xi -- Zhang, Xingliao -- Yuan, Chong-Xi -- Xu, Li -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):278-81. doi: 10.1126/science.1178501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815774" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Cartilage/embryology/physiology ; Chondrogenesis ; Dentition ; Ear Ossicles/anatomy & histology/embryology ; *Ear, Middle/anatomy & histology/embryology ; Embryo, Mammalian/anatomy & histology ; *Fossils ; Gene Expression Regulation, Developmental ; Intercellular Signaling Peptides and Proteins/metabolism ; *Mammals/anatomy & histology/classification/embryology/genetics ; Mandible/anatomy & histology ; Mice ; Mice, Mutant Strains ; *Osteogenesis ; Phylogeny ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-21
    Description: Multituberculates were successful herbivorous mammals and were more diverse and numerically abundant than any other mammal groups in Mesozoic ecosystems. The clade also developed diverse locomotor adaptations in the Cretaceous and Paleogene. We report a new fossil skeleton from the Late Jurassic of China that belongs to the basalmost multituberculate family. Dental features of this new Jurassic multituberculate show omnivorous adaptation, and its well-preserved skeleton sheds light on ancestral skeletal features of all multituberculates, especially the highly mobile joints of the ankle, crucial for later evolutionary success of multituberculates in the Cretaceous and Paleogene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Chong-Xi -- Ji, Qiang -- Meng, Qing-Jin -- Tabrum, Alan R -- Luo, Zhe-Xi -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):779-83. doi: 10.1126/science.1237970.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950536" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Animals ; *Biological Evolution ; Biomechanical Phenomena ; Bone and Bones/anatomy & histology ; China ; Dentition ; *Fossils ; Joints/anatomy & histology/physiology ; Locomotion ; *Mammals/anatomy & histology/classification/physiology ; Mandible/anatomy & histology ; Paleodontology ; Phylogeny ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...