ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-14
    Description: The global epidemic of multidrug-resistant Salmonella Typhimurium DT104 provides an important example, both in terms of the agent and its resistance, of a widely disseminated zoonotic pathogen. Here, with an unprecedented national collection of isolates collected contemporaneously from humans and animals and including a sample of internationally derived isolates, we have used whole-genome sequencing to dissect the phylogenetic associations of the bacterium and its antimicrobial resistance genes through the course of an epidemic. Contrary to current tenets supporting a single homogeneous epidemic, we demonstrate that the bacterium and its resistance genes were largely maintained within animal and human populations separately and that there was limited transmission, in either direction. We also show considerable variation in the resistance profiles, in contrast to the largely stable bacterial core genome, which emphasizes the critical importance of integrated genotypic data sets in understanding the ecology of bacterial zoonoses and antimicrobial resistance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012302/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012302/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mather, A E -- Reid, S W J -- Maskell, D J -- Parkhill, J -- Fookes, M C -- Harris, S R -- Brown, D J -- Coia, J E -- Mulvey, M R -- Gilmour, M W -- Petrovska, L -- de Pinna, E -- Kuroda, M -- Akiba, M -- Izumiya, H -- Connor, T R -- Suchard, M A -- Lemey, P -- Mellor, D J -- Haydon, D T -- Thomson, N R -- 098051/Wellcome Trust/United Kingdom -- 260864/European Research Council/International -- AI107034/AI/NIAID NIH HHS/ -- HG006139/HG/NHGRI NIH HHS/ -- R01 AI107034/AI/NIAID NIH HHS/ -- R01 GM086887/GM/NIGMS NIH HHS/ -- R01 HG006139/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2013 Sep 27;341(6153):1514-7. doi: 10.1126/science.1240578. Epub 2013 Sep 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24030491" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drug Resistance, Multiple, Bacterial/*genetics ; Epidemics ; Genome, Bacterial ; *Host-Pathogen Interactions ; Humans ; Molecular Sequence Data ; Phylogeny ; Salmonella Infections/epidemiology/*microbiology ; Salmonella Infections, Animal/epidemiology/*microbiology ; Salmonella typhimurium/*classification/drug effects/genetics ; Zoonoses/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-26
    Description: Vibrio cholerae is a globally important pathogen that is endemic in many areas of the world and causes 3-5 million reported cases of cholera every year. Historically, there have been seven acknowledged cholera pandemics; recent outbreaks in Zimbabwe and Haiti are included in the seventh and ongoing pandemic. Only isolates in serogroup O1 (consisting of two biotypes known as 'classical' and 'El Tor') and the derivative O139 can cause epidemic cholera. It is believed that the first six cholera pandemics were caused by the classical biotype, but El Tor has subsequently spread globally and replaced the classical biotype in the current pandemic. Detailed molecular epidemiological mapping of cholera has been compromised by a reliance on sub-genomic regions such as mobile elements to infer relationships, making El Tor isolates associated with the seventh pandemic seem superficially diverse. To understand the underlying phylogeny of the lineage responsible for the current pandemic, we identified high-resolution markers (single nucleotide polymorphisms; SNPs) in 154 whole-genome sequences of globally and temporally representative V. cholerae isolates. Using this phylogeny, we show here that the seventh pandemic has spread from the Bay of Bengal in at least three independent but overlapping waves with a common ancestor in the 1950s, and identify several transcontinental transmission events. Additionally, we show how the acquisition of the SXT family of antibiotic resistance elements has shaped pandemic spread, and show that this family was first acquired at least ten years before its discovery in V. cholerae.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736323/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736323/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mutreja, Ankur -- Kim, Dong Wook -- Thomson, Nicholas R -- Connor, Thomas R -- Lee, Je Hee -- Kariuki, Samuel -- Croucher, Nicholas J -- Choi, Seon Young -- Harris, Simon R -- Lebens, Michael -- Niyogi, Swapan Kumar -- Kim, Eun Jin -- Ramamurthy, T -- Chun, Jongsik -- Wood, James L N -- Clemens, John D -- Czerkinsky, Cecil -- Nair, G Balakrish -- Holmgren, Jan -- Parkhill, Julian -- Dougan, Gordon -- 076962/Wellcome Trust/United Kingdom -- 076964/Wellcome Trust/United Kingdom -- England -- Nature. 2011 Aug 24;477(7365):462-5. doi: 10.1038/nature10392.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21866102" target="_blank"〉PubMed〈/a〉
    Keywords: Cholera/*epidemiology/microbiology/*transmission ; Genome, Bacterial/genetics ; Haiti/epidemiology ; Humans ; Likelihood Functions ; Molecular Epidemiology ; Pandemics/*statistics & numerical data ; Phylogeny ; Polymorphism, Single Nucleotide/genetics ; Vibrio cholerae/classification/*genetics/*isolation & purification ; Zimbabwe/epidemiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...