ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-01-20
    Description: Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, R W -- Millero, F J -- Taylor, J R -- Walsh, P J -- Christensen, V -- Jennings, S -- Grosell, M -- BB/D005108/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F009364/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- ISIS 1766/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):359-62. doi: 10.1126/science.1157972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biosciences, University of Exeter, Exeter EX4 4PS, UK. r.w.wilson@ex.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19150840" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomass ; Calcification, Physiologic ; Calcium Carbonate/chemistry/*metabolism ; Carbon/chemistry ; Carbon Dioxide/blood ; Chemical Precipitation ; Ecosystem ; Fishes/*metabolism ; Hydrogen-Ion Concentration ; Intestines/*metabolism ; Oceans and Seas ; Plankton/physiology ; Seawater/*chemistry ; Solubility ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-08-01
    Description: After a long history of overexploitation, increasing efforts to restore marine ecosystems and rebuild fisheries are under way. Here, we analyze current trends from a fisheries and conservation perspective. In 5 of 10 well-studied ecosystems, the average exploitation rate has recently declined and is now at or below the rate predicted to achieve maximum sustainable yield for seven systems. Yet 63% of assessed fish stocks worldwide still require rebuilding, and even lower exploitation rates are needed to reverse the collapse of vulnerable species. Combined fisheries and conservation objectives can be achieved by merging diverse management actions, including catch restrictions, gear modification, and closed areas, depending on local context. Impacts of international fleets and the lack of alternatives to fishing complicate prospects for rebuilding fisheries in many poorer regions, highlighting the need for a global perspective on rebuilding marine resources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worm, Boris -- Hilborn, Ray -- Baum, Julia K -- Branch, Trevor A -- Collie, Jeremy S -- Costello, Christopher -- Fogarty, Michael J -- Fulton, Elizabeth A -- Hutchings, Jeffrey A -- Jennings, Simon -- Jensen, Olaf P -- Lotze, Heike K -- Mace, Pamela M -- McClanahan, Tim R -- Minto, Coilin -- Palumbi, Stephen R -- Parma, Ana M -- Ricard, Daniel -- Rosenberg, Andrew A -- Watson, Reg -- Zeller, Dirk -- New York, N.Y. -- Science. 2009 Jul 31;325(5940):578-85. doi: 10.1126/science.1173146.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Dalhousie University, Halifax, NS B3H 4J1, Canada. bworm@dal.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19644114" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Biomass ; *Conservation of Natural Resources ; *Ecosystem ; *Fisheries/methods ; *Fishes/anatomy & histology ; Internationality ; Marine Biology ; Models, Biological ; Oceans and Seas ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...