ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean Drilling Program; ODP  (10)
Collection
Keywords
Publisher
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brown, Rachel E; Anderson, Linda Davis; Thomas, Ellen; Zachos, James C (2011): A core-top calibration of B/Ca in the benthic foraminifers Nuttallides umbonifera and Oridorsalis umbonatus: A proxy for Cenozoic bottom water carbonate saturation. Earth and Planetary Science Letters, 310(3-4), 360-368, https://doi.org/10.1016/j.epsl.2011.08.023
    Publication Date: 2024-01-09
    Description: We present modern B/Ca core-top calibrations for the epifaunal benthic foraminifer Nuttallides umbonifera and the infaunal Oridorsalis umbonatus to test whether B/Ca values in these species can be used for the reconstruction of paleo-D[[CO3]2-]. O. umbonatus originated in the Late Cretaceous and remains extant, whereas N. umbonifera originated in the Eocene and is the closest extant relative to Nuttallides truempyi, which ranges from the Late Cretaceous through the Eocene. We measured B/Ca in both species in 35 Holocene sediment samples from the Atlantic, Pacific and Southern Oceans. B/Ca values in epifaunal N. umbonifera (~ 85-175 µmol/mol) are consistently lower than values reported for epifaunal Cibicidoides (Cibicides) wuellerstorfi (130-250 µmol/mol), though the sensitivity of D[[CO3]2-] on B/Ca in N. umbonifera (1.23 ± 0.15) is similar to that in C. wuellerstorfi (1.14 ± 0.048). In addition, we show that B/Ca values of paired N. umbonifera and its extinct ancestor, N. truempyi, from Eocene cores are indistinguishable within error. In contrast, both the B/Ca (35-85 µmol/mol) and sensitivity to D[[CO3]2-] (0.29 ± 0.20) of core-top O. umbonatus are considerably lower (as in other infaunal species), and this offset extends into the Paleocene. Thus the B/Ca of N. umbonifera and its ancestor can be used to reconstruct bottom water D[[CO3]2?], whereas O. umbonatus B/Ca appears to be buffered by porewater [[CO3]2-] and suited for constraining long-term drift in seawater B/Ca.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Westerhold, Thomas; Röhl, Ursula; Frederichs, Thomas; Bohaty, Steven M; Zachos, James C (2015): Astronomical calibration of the geological timescale: closing the middle Eocene gap. Climate of the Past, 11, 1181-1195, https://doi.org/10.5194/cp-11-1181-2015
    Publication Date: 2024-01-09
    Description: To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 13 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Barnet, James S K; Littler, Kate; Westerhold, Thomas; Kroon, Dick; Leng, Melanie J; Bailey, Ian; Röhl, Ursula; Zachos, James C (2019): A High‐Fidelity Benthic Stable Isotope Record of Late Cretaceous–Early Eocene Climate Change and Carbon‐Cycling. Paleoceanography and Paleoclimatology, 34(4), 672-691, https://doi.org/10.1029/2019PA003556
    Publication Date: 2024-01-09
    Description: The Late Cretaceous-Early Paleogene is the most recent period of Earth history that experienced sustained global greenhouse warmth and was characterised by a dynamic carbon cycle. Yet, knowledge of ambient climate conditions and the evolution of atmospheric pCO2 at this time, along with their relation to forcing mechanisms, are still poorly constrained. Here we present an unprecedented 14.75 million year long high-resolution orbitally-tuned record of paired climate change and carbon-cycling (based on the oxygen and carbon isotope composition of benthic foraminiferal tests) compiled to date for the enigmatic Late Cretaceous to Early Eocene, and compare these records to the most up-to-date compilation of atmospheric pCO2 records for this time. We identify eccentricity as the dominant pacemaker of the observed climate and carbon cycle changes, through the modulation of precession. The carbon cycle (e.g., d13C) lagged changes in climate by ~22,800 years within the long eccentricity (405,000 year) band and ~3,000-4,500 years within the short eccentricity (100,000 year) band, suggesting that light carbon was released as a positive feedback to warming induced by small changes in orbital forcing. The majority of the hyperthermals of this time period occur during maxima in the long eccentricity cycle, with the exception of the Paleocene-Eocene Thermal Maximum and Late Maastrichtian warming event, which are likely to have been triggered by Large Igneous Province volcanism.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-09
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/pdf, 144.8 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hodell, David A; Kamenov, George D; Hathorne, Ed C; Zachos, James C; Röhl, Ursula; Westerhold, Thomas (2007): Variations in the Strontium Isotope Composition of Seawater during the Paleocene and Early Eocene from ODP Leg 208 (Walvis Ridge). Geochemistry, Geophysics, Geosystems, 8, Q09001, https://doi.org/10.1029/2007GC001607
    Publication Date: 2024-01-09
    Description: We refined the strontium isotope seawater curve for the Paleocene and early Eocene by analysis of samples recovered from the Walvis Ridge during Ocean Drilling Project (ODP) Leg 208. The highest 87Sr/86Sr values occurred in the earliest Paleocene at 65 Ma and generally decreased throughout the Paleocene, reaching minimum values between 53 and 51 Ma in the early Eocene before beginning to increase again at 50 Ma. A plausible explanation for the 87Sr/86Sr decrease between 65 and 51 Ma is increased rates of hydrothermal activity and/or the eruption and weathering of large igneous provinces (e.g., Deccan Traps and North Atlantic). Strontium isotope variations closely parallel sea level and benthic d18O changes during the late Paleocene and early Eocene, supporting previous studies linking tectonic reorganization and increased volcanism to high sea level, high CO2, and warm global temperatures.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Chun, Cecily O J; Delaney, Margaret Lois; Zachos, James C (2010): Paleoredox changes across the Paleocene-Eocene thermal maximum, Walvis Ridge (ODP Sites 1262, 1263, and 1266): Evidence from Mn and U enrichment factors. Paleoceanography, 25(4), PA4202, https://doi.org/10.1029/2009PA001861
    Publication Date: 2024-01-09
    Description: An understanding of sediment redox conditions across the Paleocene-Eocene thermal maximum (PETM) (~55 Ma) is essential for evaluating changes in processes that control deep-sea oxygenation, as well as identifying the mechanisms responsible for driving the benthic foraminifera extinction. Sites cored on the flanks of Walvis Ridge (Ocean Drilling Program Leg 208, Sites 1262, 1266, and 1263) allow us to examine changes in bottom and pore water redox conditions across a ~2 km depth transect of deep-sea sediments of PETM age recovered from the South Atlantic. Here we present measurements of the concentrations of redox-sensitive trace metals manganese (Mn) and uranium (U) in bulk sediment as proxies for redox chemistry at the sediment-water interface and below. All three Walvis Ridge sites exhibit bulk Mn enrichment factors (EF) ranging between 4 and 12 prior to the warming, values at crustal averages (Mn EF = 1) during the warming interval, and a return to pre-event values during the recovery period. U enrichment factors across the PETM remains at crustal averages (U EF = 1) at Site 1262 (deep) and Site 1266 (intermediate depth). U enrichment factors at Site 1263 (shallow) peaked at 5 immediately prior to the PETM and dropped to values near crustal averages during and after the event. All sites were lower in dissolved oxygen content during the PETM. Before and after the PETM, the deep and intermediate sites were oxygenated, while the shallow site was suboxic. Our geochemical results indicate that oxygen concentrations did indeed drop during the PETM but not sufficiently to cause massive extinction of benthic foraminifera.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Littler, Kate; Röhl, Ursula; Westerhold, Thomas; Zachos, James C (2014): A high-resolution benthic stable-isotope record for the South Atlantic: Implications for orbital-scale changes in Late Paleocene–Early Eocene climate and carbon cycling. Earth and Planetary Science Letters, 401, 18-30, https://doi.org/10.1016/j.epsl.2014.05.054
    Publication Date: 2024-01-09
    Description: The Late Paleocene and Early Eocene were characterised by warm greenhouse climates, punctuated by a series of rapid warming and ocean acidification events known as "hyperthermals", thought to have been paced or triggered by orbital cycles. While these hyperthermals, such as the Paleocene Eocene Thermal Maximum (PETM), have been studied in great detail, the background low-amplitude cycles seen in carbon and oxygen-isotope records throughout the Paleocene-Eocene have hitherto not been resolved. Here we present a 7.7 million year (myr) long, high-resolution, orbitally-tuned, benthic foraminiferal stable-isotope record spanning the late Paleocene and early Eocene interval (~52.5 - 60.5 Ma) from Ocean Drilling Program (ODP) Site 1262, South Atlantic. This high resolution (~2-4 kyr) record allows the changing character and phasing of orbitally-modulated cycles to be studied in unprecedented detail as it reflects the long-term trend in carbon cycle and climate over this interval. The main pacemaker in the benthic oxygen-isotope (d18O) and carbon-isotope (d13C) records from ODP Site 1262, are the long (405 kyr) and short (100 kyr) eccentricity cycles, and precession (21 kyr). Obliquity (41 kyr) is almost absent throughout the section except for a few brief intervals where it has a relatively weak influence. During the course of the Early Paleogene record, and particularly in the latest Paleocene, eccentricity-paced negative carbon-isotope excursions (d13C, CIEs) and coeval negative oxygen-isotope (d18O) excursions correspond to low carbonate (CaCO3) and coarse fraction (%CF) values due to increased carbonate dissolution, suggesting shoaling of the lysocline and accompanied changes in the global exogenic carbon cycle. These negative CIEs and d18O events coincide with maxima in eccentricity, with changes in d18O leading changes in d13C by ~6 (±5) kyr in the 405-kyr band and by ~3 (±1) kyr in the higher frequency 100-kyr band on average. However, these phase lags are not constant, with the lag in the 405-kyr band extending from ~4 (±5) kyr to ~21 (±2) kyr from the late Paleocene to the early Eocene, suggesting a progressively weaker coupling of climate and the carbon-cycle with time. The higher amplitude 405-kyr cycles in the latest Paleocene are associated with changes in bottom water temperature of 2-4ºC, while the most prominent 100 kyr-paced cycles can be accompanied by changes of up to 1.5ºC. Comparison of the 1262 record with a lower resolution, but orbitally-tuned benthic record for Site 1209 in the Pacific allows for verification of key features of the benthic isotope records which are global in scale including a key warming step at 57.7 Ma.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lauretano, Vittoria; Littler, Kate; Polling, M; Zachos, James C; Lourens, Lucas Joost (2015): Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum. Climate of the Past, 11(10), 1313-1324, https://doi.org/10.5194/cp-11-1313-2015
    Publication Date: 2024-01-09
    Description: Recent studies have shown that the Early Eocene Climatic Optimum (EECO) was preceded by a series of short-lived global warming events, known as hyperthermals. Here we present high-resolution benthic stable carbon and oxygen isotope records from ODP Sites 1262 and 1263 (Walvis Ridge, SE Atlantic) between ~54 and ~52 million years ago, tightly constraining the character, timing, and magnitude of six prominent hyperthermal events. These events, which include Eocene Thermal Maximum (ETM) 2 and 3, are studied in relation to orbital forcing and long-term trends. Our findings reveal an almost linear relationship between d13C and d18O for all these hyperthermals, indicating that the eccentricity-paced co-variance between deep-sea temperature changes and extreme perturbations in the exogenic carbon pool persisted during these events towards the onset of the EECO, in accord with previous observations for the Paleocene Eocene Thermal Maximum (PETM) and ETM2. The covariance of d13C and d18O during H2 and I2, which are the second pulses of the "paired" hyperthermal events ETM2-H2 and I1-I2, deviates with respect to the other events. We hypothesize that this could relate to a relatively higher contribution of an isotopically heavier source of carbon, such as peat or permafrost, and/or to climate feedbacks/local changes in circulation. Finally, the d18O records of the two sites show a systematic offset with on average 0.2 per mil heavier values for the shallower Site 1263, which we link to a slightly heavier isotopic composition of the intermediate water mass reaching the northeastern flank of the Walvis Ridge compared to that of the deeper northwestern water mass at Site 1262.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Westerhold, Thomas; Röhl, Ursula; Frederichs, Thomas; Agnini, Claudia; Raffi, Isabella; Zachos, James C; Wilkens, Roy H (2017): Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system? Climate of the Past, 13, 1129-1152, https://doi.org/10.5194/cp-13-1129-2017
    Publication Date: 2024-01-09
    Description: This is the full dataset for the manuscript Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system? by Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J. C., and Wilkens, R. H. published in Climate of the Past, 13, 1129-1152, https://doi.org/10.5194/cp-13-1129-2017, 2017. It contains 48 tables with XRF core scanning data, bulk and benthic stable isotope data compiled, raw inclination-declination-intensity data, Paleomagnetic interpretation, magnetostratigraphy, calcareous nanofossil events, mapping pairs for correlation of different hole in a drill site, tie points to correlated between drill sites for ODP Sites 1258, 1262, 1263, 1265, 1267 (Tables S1-44). Tables S45 to 48 contain a combined magnetostratigraphy, a 405-kyr tuning age model, tie points for a detailed astronomical age model, and comparison of magnetochron durations.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 47 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bralower, Timothy J; Zachos, James C; Thomas, Ellen; Parrow, Matthew; Paull, Charles K; Kelly, Daniel Clay; Premoli Silva, Isabella; Sliter, William V; Lohmann, Kyger C (1995): Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography, 10(4), 841-865, https://doi.org/10.1029/95PA01143
    Publication Date: 2024-01-09
    Description: An expanded and largely complete upper Paleocene to upper Eocene section was recovered from the pelagic cap overlying Allison Guyot, Mid-Pacific Mountains at Ocean Drilling Program (ODP) Site 865 (18°26'N, 179°33'W; paleodepth 1300-1500 m). Reconstructions show that the site was within a few degrees of the equator during the Paleogene. Because no other Paleogene sections have been recovered in the Pacific Ocean at such a low latitude, Site 865 provides a unique record of equatorial Pacific paleoceanography. Detailed stable isotopic investigations were conducted on three planktonic foraminiferal taxa (species of Acarinina, Morozovella, and Subbotina). We studied benthic foraminiferal isotopes at much lower resolution on species of Cibicidoides and Lenticulina, Nuttallides truempyi and Gavelinella beccariiformis, because of their exceptional rarity. The d18O and d13C stratigraphies from Site 865 are generally similar to those derived from other Paleocene and Eocene sections. The planktonic foraminiferal records at Site 865, however, include significantly less short-term, single-sample variability than those from higher-latitude sites, indicating that this tropical, oligotrophic location had a comparatively stable water column structure with a deep mixed layer and less seasonal variability. Low-amplitude (0.1-0.8 per mil) oscillations on timescales of 250,000 to 300,000 years correlate between the d13C records of all planktonic taxa and may represent fluctuations in the mixing intensity of surface waters. Peak sea surface temperatures of 24°-25°C occurred in the earliest Eocene, followed by a rapid cooling of 3-6°C in the late early Eocene. Temperatures remained cool and stable through the middle Eocene. In the late Eocene, surface water temperatures decreased further. Vertical temperature gradients decreased dramatically in the late Paleocene and were relatively constant through much of the Eocene but increased markedly in the late Eocene. Intermediate waters warmed through the late Paleocene, reaching a maximum temperature of 10°C in the early Eocene. Cooling in the middle and late Eocene paralleled that of surface waters, with latest Eocene temperatures below 5°C. Extinction patterns of benthic foraminifera in the latest Paleocene were similar to those observed at other Pacific sites and were coeval with a short-term, very rapid negative excursion in d13C values in planktonic and benthic taxa as at other sites. During this excursion, benthic foraminiferal d18O values decreased markedly, indicating warming of 4 to 6°C for tropical intermediate waters, while planktonic taxa show slight warming (1°C) followed by 2°C of cooling. Convergence of d18O values of planktonic and benthic foraminifera suggests that thermal gradients in the water column in this tropical location collapsed during the excursion. These data are consistent with the hypothesis that equatorial Pacific surface waters were a potential source of warm, higher salinity waters which filled portions of the deep ocean in the latest Paleocene. Oxygen isotopic data indicate that equator to high southern latitude sea surface thermal gradients decreased to as little as 4°C at the peak of the excursion, suggesting some fundamental change in global heat transport.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...