ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-04-09
    Description: The oligomeric IkappaB kinase (IKK) is composed of three polypeptides: IKKalpha and IKKbeta, the catalytic subunits, and IKKgamma, a regulatory subunit. IKKalpha and IKKbeta are similar in structure and thought to have similar function-phosphorylation of the IkappaB inhibitors in response to proinflammatory stimuli. Such phosphorylation leads to degradation of IkappaB and activation of nuclear factor kappaB transcription factors. The physiological function of these protein kinases was explored by analysis of IKKalpha-deficient mice. IKKalpha was not required for activation of IKK and degradation of IkappaB by proinflammatory stimuli. Instead, loss of IKKalpha interfered with multiple morphogenetic events, including limb and skeletal patterning and proliferation and differentiation of epidermal keratinocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Y -- Baud, V -- Delhase, M -- Zhang, P -- Deerinck, T -- Ellisman, M -- Johnson, R -- Karin, M -- R01 AI43477/AI/NIAID NIH HHS/ -- R37 ES04151/ES/NIEHS NIH HHS/ -- RR04050/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):316-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Cancer Center, University of California San Diego, La Jolla, CA 92093-0636, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195896" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/enzymology/genetics ; Animals ; Apoptosis ; Body Patterning ; Bone and Bones/abnormalities/embryology ; Cell Differentiation ; Cell Nucleus/metabolism ; Cells, Cultured ; DNA-Binding Proteins/metabolism ; Dimerization ; *Embryonic and Fetal Development ; Enzyme Activation ; Epidermis/cytology/embryology ; Female ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Keratinocytes ; Limb Deformities, Congenital/enzymology ; Male ; Mice ; *Morphogenesis ; Mutation ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Skin/embryology ; Skin Abnormalities/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-08-25
    Description: In mammals, the canonical nuclear factor kappaB (NF-kappaB) signaling pathway activated in response to infections is based on degradation of IkappaB inhibitors. This pathway depends on the IkappaB kinase (IKK), which contains two catalytic subunits, IKKalpha and IKKbeta. IKKbeta is essential for inducible IkappaB phosphorylation and degradation, whereas IKKalpha is not. Here we show that IKKalpha is required for B cell maturation, formation of secondary lymphoid organs, increased expression of certain NF-kappaB target genes, and processing of the NF-kappaB2 (p100) precursor. IKKalpha preferentially phosphorylates NF-kappaB2, and this activity requires its phosphorylation by upstream kinases, one of which may be NF-kappaB-inducing kinase (NIK). IKKalpha is therefore a pivotal component of a second NF-kappaB activation pathway based on regulated NF-kappaB2 processing rather than IkappaB degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Senftleben, U -- Cao, Y -- Xiao, G -- Greten, F R -- Krahn, G -- Bonizzi, G -- Chen, Y -- Hu, Y -- Fong, A -- Sun, S C -- Karin, M -- AI434477/AI/NIAID NIH HHS/ -- AI45045/AI/NIAID NIH HHS/ -- ESO4151/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1495-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520989" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology/*physiology ; Bone Marrow Cells/metabolism ; Evolution, Molecular ; Female ; Gene Expression Regulation ; Germinal Center ; I-kappa B Kinase ; I-kappa B Proteins/metabolism ; Immunoglobulin D/analysis ; Lipopolysaccharides/pharmacology ; Lymph Nodes/cytology/immunology ; Lymphoid Tissue/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; NF-kappa B/*metabolism ; NF-kappa B p52 Subunit ; Phosphorylation ; Protein Processing, Post-Translational ; Protein-Serine-Threonine Kinases/*metabolism ; Radiation Chimera ; Recombinant Proteins/metabolism ; *Signal Transduction ; Spleen/cytology/immunology ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-11-08
    Description: The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathway, in adult retinal ganglion cells (RGCs) promotes robust axon regeneration after optic nerve injury. In wild-type adult mice, the mTOR activity was suppressed and new protein synthesis was impaired in axotomized RGCs, which may contribute to the regeneration failure. Reactivating this pathway by conditional knockout of tuberous sclerosis complex 1, another negative regulator of the mTOR pathway, also leads to axon regeneration. Thus, our results suggest the manipulation of intrinsic growth control pathways as a therapeutic approach to promote axon regeneration after CNS injury.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652400/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652400/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Kevin Kyungsuk -- Liu, Kai -- Hu, Yang -- Smith, Patrice D -- Wang, Chen -- Cai, Bin -- Xu, Bengang -- Connolly, Lauren -- Kramvis, Ioannis -- Sahin, Mustafa -- He, Zhigang -- R01 NS051788/NS/NINDS NIH HHS/ -- R01 NS051788-04/NS/NINDS NIH HHS/ -- R01 NS058956/NS/NINDS NIH HHS/ -- R01 NS058956-02/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):963-6. doi: 10.1126/science.1161566.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉F. M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18988856" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Axotomy ; Carrier Proteins/*metabolism ; Cell Survival ; Mice ; Mice, Knockout ; Nerve Crush ; *Nerve Regeneration ; Optic Nerve ; PTEN Phosphohydrolase/genetics/*metabolism ; Phosphotransferases (Alcohol Group Acceptor)/*metabolism ; Protein Biosynthesis ; Retinal Ganglion Cells/metabolism/physiology ; Ribosomal Protein S6/metabolism ; *Signal Transduction ; TOR Serine-Threonine Kinases ; Tumor Suppressor Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-10-10
    Description: Neurons in the central nervous system (CNS) lose their ability to regenerate early in development, but the underlying mechanisms are unknown. By screening genes developmentally regulated in retinal ganglion cells (RGCs), we identified Kruppel-like factor-4 (KLF4) as a transcriptional repressor of axon growth in RGCs and other CNS neurons. RGCs lacking KLF4 showed increased axon growth both in vitro and after optic nerve injury in vivo. Related KLF family members suppressed or enhanced axon growth to differing extents, and several growth-suppressive KLFs were up-regulated postnatally, whereas growth-enhancing KLFs were down-regulated. Thus, coordinated activities of different KLFs regulate the regenerative capacity of CNS neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882032/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882032/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, Darcie L -- Blackmore, Murray G -- Hu, Ying -- Kaestner, Klaus H -- Bixby, John L -- Lemmon, Vance P -- Goldberg, Jeffrey L -- P30 EY014801/EY/NEI NIH HHS/ -- R01 NS059866/NS/NINDS NIH HHS/ -- R01 NS059866-01A2/NS/NINDS NIH HHS/ -- R01 NS061348/NS/NINDS NIH HHS/ -- R01 NS061348-01A2/NS/NINDS NIH HHS/ -- R01 NS061348-02/NS/NINDS NIH HHS/ -- R01 NS061348-03/NS/NINDS NIH HHS/ -- R01 NS061348-04/NS/NINDS NIH HHS/ -- R03 EY016790/EY/NEI NIH HHS/ -- R03 EY016790-01/EY/NEI NIH HHS/ -- R03 EY016790-02/EY/NEI NIH HHS/ -- R03 EY016790-03/EY/NEI NIH HHS/ -- T32 NS007459/NS/NINDS NIH HHS/ -- T32 NS07492/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):298-301. doi: 10.1126/science.1175737.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815778" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology/ultrastructure ; Cell Count ; Cell Survival ; Cells, Cultured ; Down-Regulation ; Gene Knockout Techniques ; Growth Cones/physiology ; Hippocampus/cytology/physiology ; Kruppel-Like Transcription Factors/genetics/*physiology ; Mice ; Nerve Crush ; Nerve Regeneration ; Neurites/physiology ; Neurons/*physiology ; Optic Nerve Injuries/physiopathology ; Rats ; Retinal Ganglion Cells/cytology/*physiology ; Transcription, Genetic ; Transfection ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-11-01
    Description: In conjunction with histone modifications, DNA methylation plays critical roles in gene silencing through chromatin remodeling. Changes in DNA methylation perturb neuronal function, and mutations in a methyl-CpG-binding protein, MeCP2, are associated with Rett syndrome. We report that increased synthesis of brain-derived neurotrophic factor (BDNF) in neurons after depolarization correlates with a decrease in CpG methylation within the regulatory region of the Bdnf gene. Moreover, increased Bdnf transcription involves dissociation of the MeCP2-histone deacetylase-mSin3A repression complex from its promoter. Our findings suggest that DNA methylation-related chromatin remodeling is important for activity-dependent gene regulation that may be critical for neural plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinowich, Keri -- Hattori, Daisuke -- Wu, Hao -- Fouse, Shaun -- He, Fei -- Hu, Yan -- Fan, Guoping -- Sun, Yi E -- NS44405/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):890-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neuroscience Interdepartmental Program, UCLA School of Medicine, 760 Westwood Plaza, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593184" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/biosynthesis/*genetics ; Cells, Cultured ; Chromatin/*metabolism ; *Chromosomal Proteins, Non-Histone ; CpG Islands/*physiology ; Cyclic AMP Response Element-Binding Protein/metabolism ; *DNA Methylation ; DNA-Binding Proteins/metabolism ; *Gene Expression Regulation ; Gene Silencing ; Histone Deacetylases/metabolism ; Methyl-CpG-Binding Protein 2 ; Mice ; Mice, Inbred BALB C ; Models, Genetic ; Neuronal Plasticity ; Neurons/*metabolism/physiology ; Potassium Chloride/pharmacology ; Promoter Regions, Genetic ; Repressor Proteins/metabolism ; Response Elements ; Transcription Factors/metabolism ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-05-13
    Description: The generation of functional hepatocytes independent of donor liver organs is of great therapeutic interest with regard to regenerative medicine and possible cures for liver disease. Induced hepatic differentiation has been achieved previously using embryonic stem cells or induced pluripotent stem cells. Particularly, hepatocytes generated from a patient's own induced pluripotent stem cells could theoretically avoid immunological rejection. However, the induction of hepatocytes from induced pluripotent stem cells is a complicated process that would probably be replaced with the arrival of improved technology. Overexpression of lineage-specific transcription factors directly converts terminally differentiated cells into some other lineages, including neurons, cardiomyocytes and blood progenitors; however, it remains unclear whether these lineage-converted cells could repair damaged tissues in vivo. Here we demonstrate the direct induction of functional hepatocyte-like (iHep) cells from mouse tail-tip fibroblasts by transduction of Gata4, Hnf1alpha and Foxa3, and inactivation of p19(Arf). iHep cells show typical epithelial morphology, express hepatic genes and acquire hepatocyte functions. Notably, transplanted iHep cells repopulate the livers of fumarylacetoacetate-hydrolase-deficient (Fah(-/-)) mice and rescue almost half of recipients from death by restoring liver functions. Our study provides a novel strategy to generate functional hepatocyte-like cells for the purpose of liver engineering and regenerative medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Pengyu -- He, Zhiying -- Ji, Shuyi -- Sun, Huawang -- Xiang, Dao -- Liu, Changcheng -- Hu, Yiping -- Wang, Xin -- Hui, Lijian -- England -- Nature. 2011 May 11;475(7356):386-9. doi: 10.1038/nature10116.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy for Sciences, Yueyang Road 320, 200031 Shanghai, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21562492" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation/genetics ; Cell Lineage ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16/deficiency/genetics ; DNA-Binding Proteins/deficiency ; Fibroblasts/*cytology/*metabolism ; GATA4 Transcription Factor/genetics/metabolism ; Gene Expression Profiling ; Hepatocyte Nuclear Factor 1-alpha/genetics/metabolism ; Hepatocyte Nuclear Factor 3-gamma/genetics/metabolism ; Hepatocytes/*cytology/*metabolism/physiology/transplantation ; Hydrolases/deficiency/genetics ; Liver/cytology/enzymology/physiology/physiopathology ; Liver Diseases/enzymology/pathology/physiopathology/therapy ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Regenerative Medicine/methods ; Survival Rate ; Tail/cytology ; Tissue Engineering/methods ; Transduction, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-06-10
    Description: Cyclin D1 is a component of the core cell cycle machinery. Abnormally high levels of cyclin D1 are detected in many human cancer types. To elucidate the molecular functions of cyclin D1 in human cancers, we performed a proteomic screen for cyclin D1 protein partners in several types of human tumours. Analyses of cyclin D1 interactors revealed a network of DNA repair proteins, including RAD51, a recombinase that drives the homologous recombination process. We found that cyclin D1 directly binds RAD51, and that cyclin D1-RAD51 interaction is induced by radiation. Like RAD51, cyclin D1 is recruited to DNA damage sites in a BRCA2-dependent fashion. Reduction of cyclin D1 levels in human cancer cells impaired recruitment of RAD51 to damaged DNA, impeded the homologous recombination-mediated DNA repair, and increased sensitivity of cells to radiation in vitro and in vivo. This effect was seen in cancer cells lacking the retinoblastoma protein, which do not require D-cyclins for proliferation. These findings reveal an unexpected function of a core cell cycle protein in DNA repair and suggest that targeting cyclin D1 may be beneficial also in retinoblastoma-negative cancers which are currently thought to be unaffected by cyclin D1 inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jirawatnotai, Siwanon -- Hu, Yiduo -- Michowski, Wojciech -- Elias, Joshua E -- Becks, Lisa -- Bienvenu, Frederic -- Zagozdzon, Agnieszka -- Goswami, Tapasree -- Wang, Yaoyu E -- Clark, Alan B -- Kunkel, Thomas A -- van Harn, Tanja -- Xia, Bing -- Correll, Mick -- Quackenbush, John -- Livingston, David M -- Gygi, Steven P -- Sicinski, Piotr -- P01 CA080111/CA/NCI NIH HHS/ -- P01 CA080111-12/CA/NCI NIH HHS/ -- P01 CA109901/CA/NCI NIH HHS/ -- P01 CA109901-07/CA/NCI NIH HHS/ -- P30 AI060354/AI/NIAID NIH HHS/ -- R01 CA083688/CA/NCI NIH HHS/ -- R01 CA083688-10/CA/NCI NIH HHS/ -- R01 CA138804/CA/NCI NIH HHS/ -- R01 CA138804-02/CA/NCI NIH HHS/ -- Z01 ES065089-11/Intramural NIH HHS/ -- England -- Nature. 2011 Jun 8;474(7350):230-4. doi: 10.1038/nature10155.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21654808" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Comet Assay ; Cyclin D1/deficiency/*metabolism ; DNA Damage/radiation effects ; *DNA Repair/radiation effects ; HeLa Cells ; Humans ; Mice ; Neoplasms/genetics/*metabolism/pathology ; Protein Binding/radiation effects ; *Protein Interaction Mapping ; Rad51 Recombinase/*metabolism ; Radiation, Ionizing ; Recombination, Genetic/genetics ; Retinoblastoma Protein/deficiency
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-15
    Description: The carnivoran giant panda has a specialized bamboo diet, to which its alimentary tract is poorly adapted. Measurements of daily energy expenditure across five captive and three wild pandas averaged 5.2 megajoules (MJ)/day, only 37.7% of the predicted value (13.8 MJ/day). For the wild pandas, the mean was 6.2 MJ/day, or 45% of the mammalian expectation. Pandas achieve this exceptionally low expenditure in part by reduced sizes of several vital organs and low physical activity. In addition, circulating levels of thyroid hormones thyroxine (T4) and triiodothyronine (T3) averaged 46.9 and 64%, respectively, of the levels expected for a eutherian mammal of comparable size. A giant panda-unique mutation in the DUOX2 gene, critical for thyroid hormone synthesis, might explain these low thyroid hormone levels. A combination of morphological, behavioral, physiological, and genetic adaptations, leading to low energy expenditure, likely enables giant pandas to survive on a bamboo diet.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nie, Yonggang -- Speakman, John R -- Wu, Qi -- Zhang, Chenglin -- Hu, Yibo -- Xia, Maohua -- Yan, Li -- Hambly, Catherine -- Wang, Lu -- Wei, Wei -- Zhang, Jinguo -- Wei, Fuwen -- New York, N.Y. -- Science. 2015 Jul 10;349(6244):171-4. doi: 10.1126/science.aab2413.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. ; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China. Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK. ; Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China. ; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK. ; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China. ; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. weifw@ioz.ac.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160943" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Body Temperature ; Cattle ; Chromosomes, Human, Pair 15/genetics ; Diet/veterinary ; Dogs ; *Eating ; Energy Metabolism/genetics/*physiology ; Gastrointestinal Tract ; Genetic Variation ; Humans ; Mice ; Molecular Sequence Data ; Motor Activity ; NADPH Oxidase/*genetics ; Organ Size ; Sasa ; Thyroxine/blood ; Triiodothyronine/blood ; Ursidae/anatomy & histology/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...