ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (108)
  • Mice  (63)
  • Molecular Sequence Data  (55)
Collection
  • Articles  (108)
  • 1
    Publication Date: 2003-11-01
    Description: Mutations in MeCP2, which encodes a protein that has been proposed to function as a global transcriptional repressor, are the cause of Rett syndrome (RT T), an X-linked progressive neurological disorder. Although the selective inactivation of MeCP2 in neurons is sufficient to confer a Rett-like phenotype in mice, the specific functions of MeCP2 in postmitotic neurons are not known. We find that MeCP2 binds selectively to BDNF promoter III and functions to repress expression of the BDNF gene. Membrane depolarization triggers the calcium-dependent phosphorylation and release of MeCP2 from BDNF promoter III, thereby facilitating transcription. These studies indicate that MeCP2 plays a key role in the control of neuronal activity-dependent gene regulation and suggest that the deregulation of this process may underlie the pathology of RT T.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wen G -- Chang, Qiang -- Lin, Yingxi -- Meissner, Alexander -- West, Anne E -- Griffith, Eric C -- Jaenisch, Rudolf -- Greenberg, Michael E -- HD 18655/HD/NICHD NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):885-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593183" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/*genetics ; Calcium/*metabolism ; Cell Membrane/physiology ; Cells, Cultured ; *Chromosomal Proteins, Non-Histone ; Cloning, Molecular ; CpG Islands ; DNA Methylation ; DNA-Binding Proteins/*metabolism ; Electrophoretic Mobility Shift Assay ; *Gene Expression Regulation ; Gene Silencing ; Histones/metabolism ; Methyl-CpG-Binding Protein 2 ; Methylation ; Mice ; Mice, Knockout ; Neurons/metabolism/physiology ; Phosphorylation ; Potassium Chloride/pharmacology ; Precipitin Tests ; Promoter Regions, Genetic ; Rats ; *Repressor Proteins ; Rett Syndrome/genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: The three-dimensional structure of a 70-kilodalton amino terminally truncated form of human topoisomerase I in complex with a 22-base pair duplex oligonucleotide, determined to a resolution of 2.8 angstroms, reveals all of the structural elements of the enzyme that contact DNA. The linker region that connects the central core of the enzyme to the carboxyl-terminal domain assumes a coiled-coil configuration and protrudes away from the remainder of the enzyme. The positively charged DNA-proximal surface of the linker makes only a few contacts with the DNA downstream of the cleavage site. In combination with the crystal structures of the reconstituted human topoisomerase I before and after DNA cleavage, this information suggests which amino acid residues are involved in catalyzing phosphodiester bond breakage and religation. The structures also lead to the proposal that the topoisomerization step occurs by a mechanism termed "controlled rotation."〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stewart, L -- Redinbo, M R -- Qiu, X -- Hol, W G -- Champoux, J J -- CA65656/CA/NCI NIH HHS/ -- GM16713/GM/NIGMS NIH HHS/ -- GM49156/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1534-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Structure Center and Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA 98195-7742, USA. emerald_biostructures@rocketmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488652" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Topoisomerases, Type I/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; *Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-04-16
    Description: Mutation of the VHL tumor suppressor is associated with the inherited von Hippel-Lindau (VHL) cancer syndrome and the majority of kidney cancers. VHL binds the ElonginC-ElonginB complex and regulates levels of hypoxia-inducible proteins. The structure of the ternary complex at 2.7 angstrom resolution shows two interfaces, one between VHL and ElonginC and another between ElonginC and ElonginB. Tumorigenic mutations frequently occur in a 35-residue domain of VHL responsible for ElonginC binding. A mutational patch on a separate domain of VHL indicates a second macromolecular binding site. The structure extends the similarities to the SCF (Skp1-Cul1-F-box protein) complex that targets proteins for degradation, supporting the hypothesis that VHL may function in an analogous pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stebbins, C E -- Kaelin, W G Jr -- Pavletich, N P -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):455-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Structural Biology, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10205047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Cycle Proteins/chemistry/metabolism ; Cloning, Molecular ; Crystallography, X-Ray ; *Genes, Tumor Suppressor ; Humans ; Hydrogen Bonding ; *Ligases ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mutation, Missense ; Neoplasms/genetics ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry/genetics/metabolism ; S-Phase Kinase-Associated Proteins ; Surface Properties ; Transcription Factors/*chemistry/metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Von Hippel-Lindau Tumor Suppressor Protein ; von Hippel-Lindau Disease/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-02-26
    Description: Steroid receptors bind to site-specific response elements in chromatin and modulate gene expression in a hormone-dependent fashion. With the use of a tandem array of mouse mammary tumor virus reporter elements and a form of glucocorticoid receptor labeled with green fluorescent protein, targeting of the receptor to response elements in live mouse cells was observed. Photobleaching experiments provide direct evidence that the hormone-occupied receptor undergoes rapid exchange between chromatin and the nucleoplasmic compartment. Thus, the interaction of regulatory proteins with target sites in chromatin is a more dynamic process than previously believed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McNally, J G -- Muller, W G -- Walker, D -- Wolford, R -- Hager, G L -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1262-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Receptor Biology and Gene Expression, Building 41, Room B602, National Cancer Institute, Bethesda, MD 20892-5055, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10678832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line, Transformed ; Cell Nucleus/metabolism ; Chromatin/*metabolism ; Dexamethasone/metabolism/*pharmacology ; Green Fluorescent Proteins ; In Situ Hybridization, Fluorescence ; Ligands ; Luminescent Proteins ; Mammary Tumor Virus, Mouse/genetics ; Mice ; Microscopy, Confocal ; Microscopy, Fluorescence ; Nucleosomes/metabolism ; Receptors, Glucocorticoid/*metabolism ; *Response Elements ; *Terminal Repeat Sequences
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-04-09
    Description: HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ivan, M -- Kondo, K -- Yang, H -- Kim, W -- Valiando, J -- Ohh, M -- Salic, A -- Asara, J M -- Lane, W S -- Kaelin , W G Jr -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):464-8. Epub 2001 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11292862" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Cell Hypoxia ; Cell Line ; Cobalt/pharmacology ; Deferoxamine/pharmacology ; Humans ; Hydroxylation ; Hydroxyproline/*metabolism ; *Ligases ; Mass Spectrometry ; Mice ; Molecular Sequence Data ; Oxygen/*physiology ; Protein Structure, Tertiary ; Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/*metabolism ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Ubiquitins/metabolism ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-04-24
    Description: The von Hippel-Lindau (VHL) tumor suppressor gene is mutated in most human kidney cancers. The VHL protein is part of a complex that includes Elongin B, Elongin C, and Cullin-2, proteins associated with transcriptional elongation and ubiquitination. Here it is shown that the endogenous VHL complex in rat liver also includes Rbx1, an evolutionarily conserved protein that contains a RING-H2 fingerlike motif and that interacts with Cullins. The yeast homolog of Rbx1 is a subunit and potent activator of the Cdc53-containing SCFCdc4 ubiquitin ligase required for ubiquitination of the cyclin-dependent kinase inhibitor Sic1 and for the G1 to S cell cycle transition. These findings provide a further link between VHL and the cellular ubiquitination machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kamura, T -- Koepp, D M -- Conrad, M N -- Skowyra, D -- Moreland, R J -- Iliopoulos, O -- Lane, W S -- Kaelin, W G Jr -- Elledge, S J -- Conaway, R C -- Harper, J W -- Conaway, J W -- AG-11085/AG/NIA NIH HHS/ -- GM41628/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):657-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213691" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Cycle ; Cell Cycle Proteins/metabolism ; Cell Line ; *Cullin Proteins ; Cyclin-Dependent Kinase Inhibitor Proteins ; *F-Box Proteins ; Fungal Proteins/metabolism ; *Ligases ; Liver ; Male ; Molecular Sequence Data ; Peptide Synthases/*metabolism ; Proteins/*metabolism ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/metabolism ; S-Phase Kinase-Associated Proteins ; SKP Cullin F-Box Protein Ligases ; Saccharomyces cerevisiae/metabolism ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Transcription Factors/metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-03-16
    Description: Natural killer cell (NK) receptors for major histocompatibility complex (MHC) class I influence engraftment and graft-versus-tumor effects after allogeneic bone marrow transplantation. We find that SH2-containing inositol phosphatase (SHIP) influences the repertoire of NK receptors. In adult SHIP-/- mice, the NK compartment is dominated by cells that express two inhibitory receptors capable of binding either self or allogeneic MHC ligands. This promiscuous repertoire has significant functional consequences, because SHIP-/- mice fail to reject fully mismatched allogeneic marrow grafts and show enhanced survival after such transplants. Thus, SHIP plays an important role in two processes that limit the success of allogeneic marrow transplantation: graft rejection and graft-versus-host disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Jia-Wang -- Howson, Julie M -- Ghansah, Tomar -- Desponts, Caroline -- Ninos, John M -- May, Sarah L -- Nguyen, Kim H T -- Toyama-Sorimachi, Noriko -- Kerr, William G -- P01 NS27405/NS/NINDS NIH HHS/ -- R01 DK54767/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 15;295(5562):2094-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Program, H. Lee Moffitt Comprehensive Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11896280" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; *Antigens, Ly ; Bone Marrow Transplantation/*immunology ; Cell Survival ; Graft Rejection/*immunology ; Graft Survival ; Graft vs Host Disease/*immunology ; H-2 Antigens/immunology/metabolism ; Haplotypes ; Histocompatibility Antigens Class I/immunology/metabolism ; Killer Cells, Natural/enzymology/*immunology/metabolism ; *Lectins, C-Type ; Ligands ; Lymphocyte Count ; Lymphocyte Subsets/immunology/metabolism ; Membrane Glycoproteins/metabolism ; Mice ; Mice, Inbred A ; Mice, Inbred BALB C ; NK Cell Lectin-Like Receptor Subfamily D ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphoric Monoester Hydrolases/chemistry/genetics/*metabolism ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Receptors, Immunologic/metabolism ; Receptors, NK Cell Lectin-Like ; Signal Transduction ; Transplantation, Homologous ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-03-09
    Description: The tumour suppressor ARF is specifically required for p53 activation under oncogenic stress. Recent studies showed that p53 activation mediated by ARF, but not that induced by DNA damage, acts as a major protection against tumorigenesis in vivo under certain biological settings, suggesting that the ARF-p53 axis has more fundamental functions in tumour suppression than originally thought. Because ARF is a very stable protein in most human cell lines, it has been widely assumed that ARF induction is mediated mainly at the transcriptional level and that activation of the ARF-p53 pathway by oncogenes is a much slower and largely irreversible process by comparison with p53 activation after DNA damage. Here we report that ARF is very unstable in normal human cells but that its degradation is inhibited in cancerous cells. Through biochemical purification, we identified a specific ubiquitin ligase for ARF and named it ULF. ULF interacts with ARF both in vitro and in vivo and promotes the lysine-independent ubiquitylation and degradation of ARF. ULF knockdown stabilizes ARF in normal human cells, triggering ARF-dependent, p53-mediated growth arrest. Moreover, nucleophosmin (NPM) and c-Myc, both of which are commonly overexpressed in cancer cells, are capable of abrogating ULF-mediated ARF ubiquitylation through distinct mechanisms, and thereby promote ARF stabilization in cancer cells. These findings reveal the dynamic feature of the ARF-p53 pathway and suggest that transcription-independent mechanisms are critically involved in ARF regulation during responses to oncogenic stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737736/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737736/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Delin -- Shan, Jing -- Zhu, Wei-Guo -- Qin, Jun -- Gu, Wei -- P01 CA080058/CA/NCI NIH HHS/ -- P01 CA097403/CA/NCI NIH HHS/ -- R01 CA085533/CA/NCI NIH HHS/ -- R01 CA118561/CA/NCI NIH HHS/ -- R01 CA129627/CA/NCI NIH HHS/ -- R01 CA131439/CA/NCI NIH HHS/ -- England -- Nature. 2010 Mar 25;464(7288):624-7. doi: 10.1038/nature08820. Epub 2010 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Genetics, and Department of Pathology and Cell Biology College of Physicians & Surgeons, Columbia University, 1130 St Nicholas Avenue, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20208519" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/*metabolism ; Cell Line ; Fibroblasts/metabolism ; *Gene Expression Regulation ; Humans ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Proto-Oncogene Proteins c-myc/metabolism ; Stress, Physiological/*physiology ; Tumor Suppressor Protein p53/*metabolism ; U937 Cells ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-07-11
    Description: Structured RNAs embedded in the untranslated regions (UTRs) of messenger RNAs can regulate gene expression. In bacteria, control of a metabolite gene is mediated by the self-cleaving activity of a ribozyme embedded in its 5' UTR. This discovery has raised the question of whether gene-regulating ribozymes also exist in eukaryotic mRNAs. Here we show that highly active hammerhead ribozymes are present in the 3' UTRs of rodent C-type lectin type II (Clec2) genes. Using a hammerhead RNA motif search with relaxed delimitation of the non-conserved regions, we detected ribozyme sequences in which the invariant regions, in contrast to the previously identified continuous hammerheads, occur as two fragments separated by hundreds of nucleotides. Notably, a fragment pair can assemble to form an active hammerhead ribozyme structure between the translation termination and the polyadenylation signals within the 3' UTR. We demonstrate that this hammerhead structure can self-cleave both in vitro and in vivo, and is able to reduce protein expression in mouse cells. These results indicate that an unrecognized mechanism of post-transcriptional gene regulation involving association of discontinuous ribozyme sequences within an mRNA may be modulating the expression of several CLEC2 proteins that function in bone remodelling and the immune response of several mammals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612532/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612532/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martick, Monika -- Horan, Lucas H -- Noller, Harry F -- Scott, William G -- R01 AI043393/AI/NIAID NIH HHS/ -- R01 AI043393-09/AI/NIAID NIH HHS/ -- R01 GM087721/GM/NIGMS NIH HHS/ -- R01043393/PHS HHS/ -- England -- Nature. 2008 Aug 14;454(7206):899-902. doi: 10.1038/nature07117. Epub 2008 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA. mmartick@yahoo.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18615019" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics ; Animals ; Down-Regulation ; Lectins, C-Type/genetics/metabolism ; Mice ; Models, Molecular ; NIH 3T3 Cells ; Nucleic Acid Conformation ; RNA, Catalytic/chemistry/*genetics/metabolism ; RNA, Messenger/chemistry/*genetics/metabolism ; Rats ; Reverse Transcriptase Polymerase Chain Reaction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-06-16
    Description: Age-related macular degeneration (AMD), a leading cause of blindness worldwide, is as prevalent as cancer in industrialized nations. Most blindness in AMD results from invasion of the retina by choroidal neovascularisation (CNV). Here we show that the eosinophil/mast cell chemokine receptor CCR3 is specifically expressed in choroidal neovascular endothelial cells in humans with AMD, and that despite the expression of its ligands eotaxin-1, -2 and -3, neither eosinophils nor mast cells are present in human CNV. Genetic or pharmacological targeting of CCR3 or eotaxins inhibited injury-induced CNV in mice. CNV suppression by CCR3 blockade was due to direct inhibition of endothelial cell proliferation, and was uncoupled from inflammation because it occurred in mice lacking eosinophils or mast cells, and was independent of macrophage and neutrophil recruitment. CCR3 blockade was more effective at reducing CNV than vascular endothelial growth factor A (VEGF-A) neutralization, which is in clinical use at present, and, unlike VEGF-A blockade, is not toxic to the mouse retina. In vivo imaging with CCR3-targeting quantum dots located spontaneous CNV invisible to standard fluorescein angiography in mice before retinal invasion. CCR3 targeting might reduce vision loss due to AMD through early detection and therapeutic angioinhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712122/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712122/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeda, Atsunobu -- Baffi, Judit Z -- Kleinman, Mark E -- Cho, Won Gil -- Nozaki, Miho -- Yamada, Kiyoshi -- Kaneko, Hiroki -- Albuquerque, Romulo J C -- Dridi, Sami -- Saito, Kuniharu -- Raisler, Brian J -- Budd, Steven J -- Geisen, Pete -- Munitz, Ariel -- Ambati, Balamurali K -- Green, Martha G -- Ishibashi, Tatsuro -- Wright, John D -- Humbles, Alison A -- Gerard, Craig J -- Ogura, Yuichiro -- Pan, Yuzhen -- Smith, Justine R -- Grisanti, Salvatore -- Hartnett, M Elizabeth -- Rothenberg, Marc E -- Ambati, Jayakrishna -- AI039759/AI/NIAID NIH HHS/ -- AI45898/AI/NIAID NIH HHS/ -- DK076893/DK/NIDDK NIH HHS/ -- EY010572/EY/NEI NIH HHS/ -- EY015130/EY/NEI NIH HHS/ -- EY015422/EY/NEI NIH HHS/ -- EY017011/EY/NEI NIH HHS/ -- EY017182/EY/NEI NIH HHS/ -- EY017950/EY/NEI NIH HHS/ -- EY018350/EY/NEI NIH HHS/ -- EY018836/EY/NEI NIH HHS/ -- R01 DK076893/DK/NIDDK NIH HHS/ -- R01 EY015422/EY/NEI NIH HHS/ -- R01 EY015422-04/EY/NEI NIH HHS/ -- R01 EY018350/EY/NEI NIH HHS/ -- R01 EY018350-02/EY/NEI NIH HHS/ -- R01 EY018836/EY/NEI NIH HHS/ -- R01 EY018836-02/EY/NEI NIH HHS/ -- England -- Nature. 2009 Jul 9;460(7252):225-30. doi: 10.1038/nature08151. Epub 2009 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ophthalmology & Visual Science, University of Kentucky, Lexington, Kentucky 40506, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19525930" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Movement ; Cell Proliferation ; Cells, Cultured ; Chemokine CCL11/antagonists & inhibitors/metabolism ; Chemokine CCL24/antagonists & inhibitors/metabolism ; Chemokines, CC/antagonists & inhibitors/metabolism ; Choroid/blood supply/cytology/metabolism ; Choroidal Neovascularization/diagnosis/metabolism ; Disease Models, Animal ; Endothelial Cells/cytology/metabolism ; Humans ; Inflammation ; Leukocytes ; Ligands ; Macular Degeneration/*diagnosis/metabolism/*therapy ; Mice ; Mice, Inbred C57BL ; Quantum Dots ; Receptors, CCR3/analysis/*antagonists & ; inhibitors/genetics/immunology/*metabolism ; Retina/drug effects/pathology ; Vascular Endothelial Growth Factor A/antagonists & inhibitors/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...