ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-23
    Description: The South China Sea Monsoon Experiment (SCSMEX) is an international field experiment with the objective to better understand the key physical processes for the onset and evolution of the Asian summer monsoon in relation to fluctuation of the regional hydrologic cycle over Southeast Asian, southern East Asia, aiming at improving monsoon prediction. In this article, we present a description of the major meteorological observation platforms during the Intensive Observing Periods (IOP) of SCSMEX. We also provide highlights of early results and discussions of the role of SCSMEX in providing valuable in-situ data for calibration of satellite rainfall estimate from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results indicate that there are distinctive stages in the onset of the South China Sea monsoon including possibly strong influences from extratropical systems as well as from convection over the Indian Ocean and the Bay of Bengal. There are some tantalizing evidence of complex interactions between the supercloud cluster development over the Indian Ocean, advancing southwest monsoon flow over the South China Sea, midlatitude disturbances and the western Pacific subtropical high, possibly contributing to the disastrous flood over Yangtze River Basin in China during June 1998.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed following the onset of the active monsoon in the northern South China Sea region. The vertical structure of the convection during periods of strong westerly flow and relatively moist environmental conditions in the lower to mid-troposphere contrasted sharply with convection observed during periods of low level easterlies, weak shear, and relatively dry conditions in the mid to upper troposphere. Several examples of mesoscale convection will be shown from the ground (ship)-based and spaceborne radar data during times of TRMM satellite overpasses. Examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will also be discussed.
    Keywords: Meteorology and Climatology
    Type: May 31, 1999 - Jun 04, 1999; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: In November 2006, AERONET released Version 2 of the Dubovik and King sky radiance and optical depth inversion. Reanalysis of the entire AERONET database revealed marked differences in aerosol properties in arid and semi arid regions with dust dominated aerosols. The change will be illustrated through sensitivity analysis and examples from the UAE2 (United Arab Emirates Unified Aerosol Experiment) field campaign. Properties of dust dominated aerosols will be presented from regional AERONET sites in China showing variations in dust aerosol properties. The constraints and limitations of the AERONET inversion will be presented that will facilitate analysis by the user community of these data.
    Keywords: Meteorology and Climatology
    Type: International Workshop on Semi-Arid Land Surface-Atmosphere Interaction; Aug 09, 2007 - Aug 13, 2007; Lanzhou; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: During the months of July-August 2007 NASA conducted a research campaign called the Tropical Composition, Clouds and Climate Coupling (TC4) experiment. Vertical profiles of ozone were measured daily using an instrument known as an ozonesonde, which is attached to a weather balloon and launch to altitudes in excess of 30 km. These ozone profiles were measured over coastal Las Tablas, Panama (7.8N, 80W) and several times per week at Alajuela, Costa Rica (ION, 84W). Meteorological systems in the form of waves, detected most prominently in 100- 300 in thick ozone layer in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves ("GW," possibly Kelvin waves), occur with similar stricture and frequency over the Paramaribo (5.8N, 55W) and San Cristobal (0.925, 90W) sites of the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The gravity wave labeled layers in individual soundings correspond to cloud outflow as indicated by the tracers measured from the NASA DC-8 and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi-horizontal displacements, referred to as Rossby waves, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extra-tropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999-2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated meteorological waves appear to dominate ozone transport in the tropical tropopause layer.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research Atmospheres; Volume 115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: The USCLI VAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCM5), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: MODIS data from NASA's Terra and Aqua satellites are being sent to several NWS Forecast Offices in real time to assist in the preparation of short-term weather forecasts. The MODIS imagery, in channels similar to those of the planned GOES-R instrument, is reformatted, sectorized, and ingested directly in Advanced Weather Interactive Processing System (AWIPS). A number of products derived from the imagery are available in near real-time as well. This transition activity, from research to operations, serves to prepare forecasters for the next generation satellite observing capabilities through real-time, hands on applications to their forecast problems. The presentation will provide examples of this transition activity and a preliminary assessment on the utility of several of the MODIS products for improving short-term forecasts.
    Keywords: Meteorology and Climatology
    Type: National Weather Association Annual meeting; Oct 16, 2004 - Oct 21, 2004; Portland, OR; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: AIRS NASA Sounding Science Team Meeting; Nov 07, 2012; Greenbelt, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Issues addressed by this program: (1) Complicated roles and responsibilities associated with multi-partner projects (2) Working relationships and communications between all organizations involved in the payload safety process (3) Consistent interpretation and implementation of safety requirements from one project to the rest (4) Consistent implementation of the Tailoring Process (5) Clearly defined NASA decision-making-authority (6) Bring Agency-wide perspective to each ElV payload project. Current process requires a Payload Safety Working Group (PSWG) for eac payload with representatives from all involved organizations.
    Keywords: Space Transportation and Safety
    Type: KSC-2008-055
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The synthesis of this information (observations and model products) by the meteorologist is facilitated by a decision support system to display and integrate the information in a useful fashion. For the NWS this system is called Advanced Weather Interactive Processing System (AWIPS). Over the last few years NASA has launched a series of new Earth Observation Satellites (EOS) for climate monitoring that include several instruments that provide high-resolution measurements of atmospheric and surface features important for weather forecasting and analysis. The key to the utilization of these unique new measurements by the NWS is the real time integration of the EOS data into the AWIPS system. This is currently being done in the Huntsville and Birmingham NWS Forecast Offices under the NASA Short-term Prediction Research and Transition (SPORT) Program. This paper describes the use of near real time MODIS and AIRS data in AWIPS to improve the detection of clouds, moisture variations, atmospheric stability, and thermal signatures that can lead to significant weather development. The paper and the conference presentation will focus on several examples where MODIS and AIRS data have made a positive impact on forecast accuracy. The results of an assessment of the utility of these products for weather forecast improvement made at the Huntsville NWS Forecast Office will be presented.
    Keywords: Meteorology and Climatology
    Type: 20th Conference on Weather Analysis and Forecasting; Jan 15, 2004; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. On the evening of 10 September 2017, Hurricane Irma passed within 100 miles to the west of KSC through the middle of the Florida peninsula. The hurricane was responsible for power outages to approximately 2/3 of Florida's population. This paper will describe the characteristics of the tropospheric wind observations from the TDRWP during Irma, provide a comparison to previous TDRWP observations from Hurricane Matthew in 2016, and discuss lessons learned regarding dissemination of TDRWP data during the event.
    Keywords: Meteorology and Climatology
    Type: M17-6304 , AMS Annual Meeting; Jan 07, 2018 - Jan 11, 2018; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...