ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-01-01
    Print ISSN: 0047-2425
    Electronic ISSN: 1537-2537
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2006-06-01
    Description: The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (pathlength and width) and an estimation of the tornado intensity. This study explores the possibility of using near-real-time medium and high spatial resolution satellite imagery from the NASA Earth Observing System satellites to provide additional information for the surveys. Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) data were used to study the damage tracks from three tornadic storms: the La Plata, Maryland, storm of 28 April 2002 and the Ellsinore and Marquand, Missouri, storms of 24 April 2002. These storms varied in intensity and occurred over regions with significantly different land cover. It was found that, depending on the nature of the land cover, tornado damage tracks from intense storms (F1 or greater) and hail storms may be evident in ASTER, Landsat, and MODIS satellite imagery. In areas where the land cover is dominated by forests, the scar patterns can show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not as obvious or cannot be seen at all in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2002 Marquand, Missouri, tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery depends on the ability to observe the ground without obstruction from space and appears to be as much dependent on the nature of the underlying surface and land cover as on the severity of the tornadic storm.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-12
    Description: The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (pathlength and width) and an estimation of the tornado intensity. This study explores the possibility of using near-real-time medium and high spatial resolution satellite imagery from the NASA Earth Observing System satellites to provide additional information for the surveys. Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were used to study the damage tracks from three tornadic storms: the La Plata, Maryland, storm of 28 April 2002 and the Ellsinore and Marquand, Missouri, storms of 24 April 2002. These storms varied in intensity and occurred over regions with significantly different land cover. It was found that, depending on the nature of the land cover, tornado damage tracks from intense storms (F1 or greater) and hail storms may be evident in ASTER, Landsat, and MODIS satellite imagery. In areas where the land cover is dominated by forests, the scar patterns can show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not as obvious or cannot be seen at all in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2002 Marquand, Missouri, tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery depends on the ability to observe the ground without obstruction from space and appears to be as much dependent on the nature of the underlying surface and land cover as on the severity of the tornadic storm.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: MODIS data from NASA's Terra and Aqua satellites are being sent to several NWS Forecast Offices in real time to assist in the preparation of short-term weather forecasts. The MODIS imagery, in channels similar to those of the planned GOES-R instrument, is reformatted, sectorized, and ingested directly in Advanced Weather Interactive Processing System (AWIPS). A number of products derived from the imagery are available in near real-time as well. This transition activity, from research to operations, serves to prepare forecasters for the next generation satellite observing capabilities through real-time, hands on applications to their forecast problems. The presentation will provide examples of this transition activity and a preliminary assessment on the utility of several of the MODIS products for improving short-term forecasts.
    Keywords: Meteorology and Climatology
    Type: National Weather Association Annual meeting; Oct 16, 2004 - Oct 21, 2004; Portland, OR; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (path length and width) and an estimation of the tornado intensity. This study explored the possibility of using near real-time medium and high-resolution satellite imagery from the NASA EOS satellites to provide additional information for the surveys. MODIS and ASTER data were used to study the damage tracks from three tornadic storms; the La Plata, Maryland storm of 28 April 2002 and the Carter-Butler Counties and Madison County Missouri storms of 24 April 2002. These storms varied in intensity (from F0-F4) and occurred over regions with different land use. It was found that, depending on the nature of land use, tornado damage tracks from intense storms (F2 or greater) may be evident in both ASTER and MODIS satellite imagery. In areas of dense vegetation the scar patterns show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not at all obvious in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2004 Madison County, Missouri tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery appears to be as much dependent on the nature of the underlying surface and land use as on the severity of the tornadic storm. The imaging sensors on the NPOESS operational satellites to be launched in 2006 will continue the unique observing capabilities of the EOS instruments.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: Recent studies at the Global Hydrology and Climate Center (GHCC) have shown that the assimilation of land skin temperature (LST) tendencies into a mesoscale model can significantly improve short-term forecasts of near surface air temperature and moisture. Derived land surface products from the GOES satellites were used in these studies to provide high spatial and temporal resolution information about the spatial and temporal variability of the land surface forcing simulated in the model. In the model assimilation studies, LST was derived using a split window technique using the 11 and 12 pm channels found on the GOES-8 Sounder. These studies used a constant surface emissivity of 0.98 for both channels. However, this emissivity assumption over the land does not take into account emissivity variations due to varying terrain characteristics and differences between channels. These emissivity variations are seen to be significant as indicated by emissivity products from the polar orbiting MODIS instrument channels similar to the GOES-8 Sounder channels mentioned above. MODIS is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. In an attempt to improve the emissivity assumptions used in the GOES Sounder LST retrieval procedure, the incorporation of MODIS high spatial resolution (1 km) emissivity measurements into the LST procedure is being explored. This paper intercompares the LST retrievals from the GOES-8 Sounder using a constant emissivity assumption with those using MODIS retrieved emissivities. The effects of MODIS emissivities on the LST retrievals are discussed. Potential improvements in model forecasts using assimilated LST products incorporating MODIS emissivities are also examined.
    Keywords: Meteorology and Climatology
    Type: 12th AMS Conference on Satellite Meteorology and Oceanography; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: As computer power continues to increase, mesoscale models are initialized at all hours of the day and continue to be run at higher and higher spatial resolutions. As a result, initializing land surface temperature can be problematic. The majority of research-based models are initialized at 00 and 12 UTC when upper air observations and reanalysis fields are available. The landsea surface temperatures are then set equal to the two-meter air temperature produced by the preprocessor analysis system. This particular procedure might be valid in the early morning hours just prior to sunrise, but it becomes less valid during the remainder of the diurnal cycle. Operational models, such as the Rapid Update Cycle run at the National Centers for Environmental Prediction (NCEP), are initialized every hour on a daily basis. This presents a unique challenge to the initial specification of the land temperature, especially during the first several hours of the solar heating cycle when land and overlying air temperatures are far from being the same. Another issue that needs to be addressed is the spatial variability of land surface temperature. By early next year, the NCEP operational Eta model will be employed at 8 km resolution. Methods to accurately specify the initial land surface temperature at such high resolution need to be explored. This paper presents the results of using data from the NASA Moderate Imaging Sensor aboard the TERRA Satellite to initialize land and sea surface temperatures within the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) 5'th generation Mesoscale Model (MM5). We have simulated a northern Gulf Coast sea breeze case to demonstrate the utility of using the MODIS data to initialize both the land and sea surface temperature fields. Model grid configurations of 12-, 4-, and l-km are employed.
    Keywords: Meteorology and Climatology
    Type: AMS Conference on Satellite Meteorology; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The synthesis of this information (observations and model products) by the meteorologist is facilitated by a decision support system to display and integrate the information in a useful fashion. For the NWS this system is called Advanced Weather Interactive Processing System (AWIPS). Over the last few years NASA has launched a series of new Earth Observation Satellites (EOS) for climate monitoring that include several instruments that provide high-resolution measurements of atmospheric and surface features important for weather forecasting and analysis. The key to the utilization of these unique new measurements by the NWS is the real time integration of the EOS data into the AWIPS system. This is currently being done in the Huntsville and Birmingham NWS Forecast Offices under the NASA Short-term Prediction Research and Transition (SPORT) Program. This paper describes the use of near real time MODIS and AIRS data in AWIPS to improve the detection of clouds, moisture variations, atmospheric stability, and thermal signatures that can lead to significant weather development. The paper and the conference presentation will focus on several examples where MODIS and AIRS data have made a positive impact on forecast accuracy. The results of an assessment of the utility of these products for weather forecast improvement made at the Huntsville NWS Forecast Office will be presented.
    Keywords: Meteorology and Climatology
    Type: 20th Conference on Weather Analysis and Forecasting; Jan 15, 2004; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: Skin temperature (ST) retrievals derived from geostationary satellite observations have both high temporal and spatial resolutions and are therefore useful for applications such as assimilation into mesoscale forecast models, nowcasting, and diagnostic studies. Our retrieval method uses a Physical Split Window technique requiring at least two channels within the longwave infrared window. On current GOES satellites, including GOES-11, there are two Imager channels within the required spectral interval. However, beginning with the GOES-M satellite the 12-um channel will be removed, leaving only one longwave channel. The Sounder instrument will continue to have three channels within the longwave window, and therefore ST retrievals will be derived from Sounder measurements. This research compares retrievals from the two instruments and evaluates the effects of the spatial resolution and sensor calibration differences on the retrievals. Both Imager and Sounder retrievals are compared to ground-truth data to evaluate the overall accuracy of the technique. An analysis of GOES-8 and GOES-11 intercomparisons is also presented.
    Keywords: Earth Resources and Remote Sensing
    Type: 11th Conference on Satellite Meteorlogy and Oceanography; Oct 15, 2001 - Oct 18, 2001; Madison, WI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...