ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 378 (1995), S. 706-708 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] To examine the forcing of circulation anomalies, or departures from climatology, accompanying El Nino events, we attempted to simulate the difference in upper-level rotational flow between recent El Nino and La Nina winters using a spectral divergent steady-state barotropic model6. The large-scale ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 9247–9290, doi:10.1175/JCLI-D-12-00593.1.
    Description: This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.
    Description: The authors acknowledge the support of NOAA/Climate Program Office/Modeling, Analysis, Predictions and Projections (MAPP) program as part of the CMIP5 Task Force.
    Description: 2014-06-01
    Keywords: North America ; Regional effects ; Coupled models ; Decadal variability ; Interannual variability ; Intraseasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-05-01
    Description: The Mekong River is the lifeblood of the Southeast (SE) Asian economies. In situ and satellite-based precipitation are analyzed to assess the amount of water received as precipitation in the river basin (Mekong basin water), in particular, the amount each country receives. Laos, Thailand, and Cambodia contribute ~75% of the basin water during March–September, whereas China’s contribution is 10%–15%, except in winter when it rises to 25%. The processing of Mekong basin water into Mekong streamflow entails accounting for the uncertain water losses but, interestingly, interannual variations in Mekong basin water can be processed into Mekong streamflow using a simple hydrologic model, which is validated using monthly river discharge data from four stations. Preliminary evidence for the impact of upbasin dams on downstream flow, especially the timing of peak summer flow, is presented. Characterization of El Niño’s influence on SE Asian rainfall reveals significant rainfall reductions in the fall preceding and the spring following El Niño’s peak phase (winter); such reductions at the bookends of the dry season in SE Asia (winter) generate droughts, as in 2015–16. The linear trend in twentieth-century rainfall assesses the vulnerability of the region to climate change. The analysis indicates the feasibility of streamflow prediction using a simple hydrologic model driven by high-resolution precipitation observations and forecasts. It raises the prospects of drought prediction based on El Niño’s emergence/forecast. Finally, by showing the Mekong to be largely a rain-fed and not snowmelt-fed river, it provides quantitative context for assessing the notion of Chinese control on the lower Mekong via upbasin dams.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-01-23
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-12
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-12-17
    Description: The northeast monsoon (NEM) brings the bulk of annual rainfall to southeastern peninsular India, Sri Lanka, and the neighboring Southeast Asian countries. This October–December monsoon is referred to as the winter monsoon in this region. In contrast, the southwest summer monsoon brings bountiful rainfall to the Indo-Gangetic Plain. The winter monsoon region is objectively demarcated from analysis of the timing of peak monthly rainfall. Because of the region’s complex terrain, in situ precipitation datasets are assessed using high-spatiotemporal-resolution Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, prior to their use in monsoon evolution, variability, and trend analyses. The Global Precipitation Climatology Center’s in situ analysis showed the least bias from TRMM. El Niño–Southern Oscillation’s (ENSO) impact on NEM rainfall is shown to be significant, leading to stronger NEM rainfall over southeastern peninsular India and Sri Lanka but diminished rainfall over Thailand, Vietnam, and the Philippines. The impact varies subseasonally, being weak in October and strong in November. The positive anomalies over peninsular India are generated by anomalous anticyclonic flow centered over the Bay of Bengal, which is forced by an El Niño–related reduction in deep convection over the Maritime Continent. The historical twentieth-century climate simulations informing the Intergovernmental Panel on Climate Change’s Fifth Assessment (IPCC-AR5) show varied deficiencies in the NEM rainfall distribution and a markedly weaker (and often unrealistic) ENSO–NEM rainfall relationship.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-08-15
    Description: The annual cycle of precipitation and the interannual variability of the North American hydroclimate during summer months are analyzed in coupled simulations of the twentieth-century climate. The state-of-the-art general circulation models, participating in the Fourth Assessment Report for the Intergovernmental Panel on Climate Change (IPCC), included in the present study are the U.S. Community Climate System Model version 3 (CCSM3), the Parallel Climate Model (PCM), the Goddard Institute for Space Studies model version EH (GISS-EH), and the Geophysical Fluid Dynamics Laboratory Coupled Model version 2.1 (GFDL-CM2.1); the Met Office’s Third Hadley Centre Coupled Ocean–Atmosphere GCM (UKMO-HadCM3); and the Japanese Model for Interdisciplinary Research on Climate version 3.2 [MIROC3.2(hires)]. Datasets with proven high quality such as NCEP’s North American Regional Reanalysis (NARR), and the Climate Prediction Center (CPC) U.S.–Mexico precipitation analysis are used as targets for simulations. Climatological precipitation is not easily simulated. While models capture winter precipitation very well over the U.S. northwest, they encounter failure over the U.S. southeast in the same season. Summer precipitation over the central United States and Mexico is also a great challenge for models, particularly the timing. In general the UKMO-HadCM3 is closest to the observations. The models’ potential in simulating interannual hydroclimate variability over North America during the warm season is varied and limited to the central United States. Models like PCM, and in particular UKMO-HadCM3, exhibit reasonably well the observed distribution and relative importance of remote and local contributions to precipitation variability over the region (i.e., convergence of remote moisture fluxes dominate over local evapotranspiration). However, in models like CCSM3 and GFDL-CM2.1 local contributions dominate over remote ones, in contrast with warm-season observations. In the other extreme are models like GISS-EH and MIROC3.2(hires) that prioritize the remote influence of moisture fluxes and neglect the local influence of land surface processes to the regional precipitation variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-04-01
    Description: Variability of the Great Plains low-level jet (GPLLJ) is analyzed from the perspective of larger-scale, lower-frequency influences and regional hydroclimate impacts as opposed to the usual analysis of its frequency, diurnal variability, and mesoscale structure. The circulation-centric core analysis is conducted with monthly data from the high spatiotemporal resolution, precipitation-assimilating North American Regional Reanalysis, and the 40-yr ECMWF Re-Analysis (ERA-40) (as necessary) to identify the recurrent patterns of GPLLJ variability and their large-scale circulation links. The links are first investigated from regressions of an index representing meridional wind speed in the climatological jet-core region; the core region itself is defined from analysis of seasonal and diurnal variability of the jet structure and moisture fluxes. The analysis reveals that GPLLJ variability is, indeed, linked to coherent, large-scale, upper-level height patterns over the Pacific and North Atlantic Oscillation (NAO) variability in the Atlantic. A Rossby wave source analysis shows the Pacific height pattern to be potentially linked to tropical diabatic heating anomalies in the west-central basin and in the eastern Pacific sector. EOF analysis of GPLLJ variability shows it to be composed of three modes that, together, account for ∼75% of the variance. The modes represent the strengthening/expansion of the jet core (38%), with a strong precipitation impact on the northern Great Plains, and linked to post-peak-phase ENSO variability; meridional shift of the GPLLJ (23%), with a Gulf states precipitation focus, and linked to pre-peak-phase ENSO variability; and in-place strengthening of the GPLLJ (12%), with dipolar influence on Great Plains and Gulf states precipitation, and linked to summer NAO variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-01-15
    Description: The evolution of supersynoptic (i.e., pentad) Great Plains low-level jet (GPLLJ) variability, its precipitation impacts, and large-scale circulation context are analyzed in the North American Regional Reanalysis (NARR)—a high-resolution precipitation-assimilating dataset—and the NCEP–NCAR reanalysis. The analysis strategy leans on the extended EOF technique, which targets both spatial and temporal recurrence of a variability episode. Pentad GPLLJ variability structures are found to be spatially similar to those in the monthly analysis. The temporal evolution of the supersynoptic GPLLJ-induced precipitation anomalies reveal interesting lead and lag relationships highlighted by GPLLJ variability-leading precipitation anomalies. Interestingly, similar temporal phasing of the GPLLJ and precipitation anomalies were operative during the 1993 (1988) floods (drought) over the Great Plains, indicating the importance of these submonthly GPLLJ variability modes in the instigation of extreme hydroclimatic episodes. The northward-shifted (dry) GPLLJ variability mode is linked to large-scale circulation variations emanating from remote regions that are modified by interaction with the Rocky Mountains, suggesting that the supersynoptic GPLLJ fluctuations may have their origin in orographic modulation of baroclinic development.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...