ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-05-21
    Description: Author(s): E. Y. Yeoh (杨韵颐), S. J. Zhu (朱胜江), J. H. Hamilton, K. Li, A. V. Ramayya, Y. X. Liu (刘艳鑫), J. K. Hwang, S. H. Liu, J. G. Wang (王建国), Y. Sun (孙扬), J. A. Sheikh, G. H. Bhat, Y. X. Luo, J. O. Rasmussen, I. Y. Lee, H. B. Ding (丁怀博), L. Gu (顾龙), Q. Xu (徐强), Z. G. Xiao (肖志刚), and W. C. Ma High-spin levels of the neutron-rich 114 Ru have been investigated by measuring the prompt γ rays in the spontaneous fission of 252 Cf . The ground-state band and one-phonon γ -vibrational band have been extended up to 14 + and 9 + , respectively. Two levels are proposed as the members of a two-phonon γ -vi... [Phys. Rev. C 83, 054317] Published Fri May 20, 2011
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-01-31
    Description: Author(s): S. J. Zhu (朱胜江), M. Sakhaee, J. H. Hamilton, A. V. Ramayya, N. T. Brewer, J. K. Hwang, S. H. Liu, E. Y. Yeoh (杨韵颐), Z. G. Xiao (肖志刚), Q. Xu (徐强), Z. Zhang (张钊), Y. X. Luo, J. O. Rasmussen, I. Y. Lee, K. Li, and W. C. Ma Background: The very neutron-rich 150 Ce is located at the edge of the Z =56 , N =88 octupole deformed island. Studying its high spin states and octupole correlations is important for systematically understanding the nuclear structural characteristics in this region. Purpose: To investigate the high spi... [Phys. Rev. C 85, 014330] Published Mon Jan 30, 2012
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-03
    Description: Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which represent strong candidates for altitude adaptation, were identified. The strongest signal of natural selection came from endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1), a transcription factor involved in response to hypoxia. One single-nucleotide polymorphism (SNP) at EPAS1 shows a 78% frequency difference between Tibetan and Han samples, representing the fastest allele frequency change observed at any human gene to date. This SNP's association with erythrocyte abundance supports the role of EPAS1 in adaptation to hypoxia. Thus, a population genomic survey has revealed a functionally important locus in genetic adaptation to high altitude.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711608/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711608/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yi, Xin -- Liang, Yu -- Huerta-Sanchez, Emilia -- Jin, Xin -- Cuo, Zha Xi Ping -- Pool, John E -- Xu, Xun -- Jiang, Hui -- Vinckenbosch, Nicolas -- Korneliussen, Thorfinn Sand -- Zheng, Hancheng -- Liu, Tao -- He, Weiming -- Li, Kui -- Luo, Ruibang -- Nie, Xifang -- Wu, Honglong -- Zhao, Meiru -- Cao, Hongzhi -- Zou, Jing -- Shan, Ying -- Li, Shuzheng -- Yang, Qi -- Asan -- Ni, Peixiang -- Tian, Geng -- Xu, Junming -- Liu, Xiao -- Jiang, Tao -- Wu, Renhua -- Zhou, Guangyu -- Tang, Meifang -- Qin, Junjie -- Wang, Tong -- Feng, Shuijian -- Li, Guohong -- Huasang -- Luosang, Jiangbai -- Wang, Wei -- Chen, Fang -- Wang, Yading -- Zheng, Xiaoguang -- Li, Zhuo -- Bianba, Zhuoma -- Yang, Ge -- Wang, Xinping -- Tang, Shuhui -- Gao, Guoyi -- Chen, Yong -- Luo, Zhen -- Gusang, Lamu -- Cao, Zheng -- Zhang, Qinghui -- Ouyang, Weihan -- Ren, Xiaoli -- Liang, Huiqing -- Zheng, Huisong -- Huang, Yebo -- Li, Jingxiang -- Bolund, Lars -- Kristiansen, Karsten -- Li, Yingrui -- Zhang, Yong -- Zhang, Xiuqing -- Li, Ruiqiang -- Li, Songgang -- Yang, Huanming -- Nielsen, Rasmus -- Wang, Jun -- Wang, Jian -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 MH084695/MH/NIMH NIH HHS/ -- R01HG003229/HG/NHGRI NIH HHS/ -- R01MHG084695/PHS HHS/ -- New York, N.Y. -- Science. 2010 Jul 2;329(5987):75-8. doi: 10.1126/science.1190371.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BGI-Shenzhen, Shenzhen 518083, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595611" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization/*genetics ; *Altitude ; Asian Continental Ancestry Group/genetics ; Basic Helix-Loop-Helix Transcription Factors/*genetics/physiology ; Bayes Theorem ; China ; Erythrocyte Count ; Ethnic Groups/genetics ; *Exons ; Female ; Gene Frequency ; Genetic Association Studies ; *Genome, Human ; Hemoglobins/analysis ; Humans ; Male ; Oxygen/blood ; Polymorphism, Single Nucleotide ; *Selection, Genetic ; Sequence Analysis, DNA ; Tibet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-12
    Description: Author(s): P. Doornenbal, H. Scheit, S. Takeuchi (武内聡), N. Aoi (青井考), K. Li (李闊昂), M. Matsushita (松下昌史), D. Steppenbeck, H. Wang (王赫), H. Baba (馬場秀忠), E. Ideguchi (井手口栄治), N. Kobayashi (小林信之), Y. Kondo (近藤洋介), J. Lee (李曉菁), S. Michimasa (道正新一郎), T. Motobayashi (本林透), A. Poves, H. Sakurai (櫻井博儀), M. Takechi (武智麻耶), Y. Togano (栂野泰宏), and K. Yoneda (米田健一郎) With new-generation facilities able to provide beams of very unstable nuclei, one can explore how the traditional magic numbers and shell closures become fragile and break down in neutron-rich regions of the chart of nuclides. One important such region is near 32 Mg, the so-called ”island of inversion”, suggesting a rearrangement of the nuclear shell structure. This study reports on B ( E 2 ) transition probabilities for the most neutron-rich nuclei yet measured in that region, 30 Ne and 36 Mg. The results help map the evolution and extent of anomalous shell structure toward the neutron drip line. [Phys. Rev. C 93, 044306] Published Mon Apr 11, 2016
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-24
    Description: Antibiotics administered in low doses have been widely used as growth promoters in the agricultural industry since the 1950s, yet the mechanisms for this effect are unclear. Because antimicrobial agents of different classes and varying activity are effective across several vertebrate species, we proposed that such subtherapeutic administration alters the population structure of the gut microbiome as well as its metabolic capabilities. We generated a model of adiposity by giving subtherapeutic antibiotic therapy to young mice and evaluated changes in the composition and capabilities of the gut microbiome. Administration of subtherapeutic antibiotic therapy increased adiposity in young mice and increased hormone levels related to metabolism. We observed substantial taxonomic changes in the microbiome, changes in copies of key genes involved in the metabolism of carbohydrates to short-chain fatty acids, increases in colonic short-chain fatty acid levels, and alterations in the regulation of hepatic metabolism of lipids and cholesterol. In this model, we demonstrate the alteration of early-life murine metabolic homeostasis through antibiotic manipulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553221/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553221/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, Ilseung -- Yamanishi, Shingo -- Cox, Laura -- Methe, Barbara A -- Zavadil, Jiri -- Li, Kelvin -- Gao, Zhan -- Mahana, Douglas -- Raju, Kartik -- Teitler, Isabel -- Li, Huilin -- Alekseyenko, Alexander V -- Blaser, Martin J -- 1UL1-RR029893/RR/NCRR NIH HHS/ -- R01 DK090989/DK/NIDDK NIH HHS/ -- T-R01-DK090989/DK/NIDDK NIH HHS/ -- UL1 RR029893/RR/NCRR NIH HHS/ -- UL1 TR000038/TR/NCATS NIH HHS/ -- UL1-TR000038/TR/NCATS NIH HHS/ -- England -- Nature. 2012 Aug 30;488(7413):621-6. doi: 10.1038/nature11400.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22914093" target="_blank"〉PubMed〈/a〉
    Keywords: Adiposity/*drug effects/physiology ; Age Factors ; Animals ; Anti-Bacterial Agents/*administration & dosage/*pharmacology ; Body Composition/drug effects ; Body Weight/drug effects ; Bone Density/drug effects ; Bone Development/drug effects ; Cecum/drug effects/metabolism ; Cholesterol/metabolism ; Colon/*drug effects/*microbiology ; Fatty Acids, Volatile/metabolism ; Feces/microbiology ; Female ; Gastric Inhibitory Polypeptide/blood/metabolism ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Male ; Metagenome/*drug effects ; Mice ; Mice, Inbred C57BL ; Polymerase Chain Reaction ; Weaning
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: The lateral habenula (LHb) has recently emerged as a key brain region in the pathophysiology of depression. However, the molecular mechanism by which LHb becomes hyperactive in depression remains unknown. Through a quantitative proteomic screen, we found that expression of the beta form of calcium/calmodulin-dependent protein kinase type II (betaCaMKappaIotaIota) was significantly up-regulated in the LHb of animal models of depression and down-regulated by antidepressants. Increasing beta-, but not alpha-, CaMKII in the LHb strongly enhanced the synaptic efficacy and spike output of LHb neurons and was sufficient to produce profound depressive symptoms, including anhedonia and behavioral despair. Down-regulation of betaCaMKII levels, blocking its activity or its target molecule the glutamate receptor GluR1 reversed the depressive symptoms. These results identify betaCaMKII as a powerful regulator of LHb neuron function and a key molecular determinant of depression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932364/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932364/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Kun -- Zhou, Tao -- Liao, Lujian -- Yang, Zhongfei -- Wong, Catherine -- Henn, Fritz -- Malinow, Roberto -- Yates, John R 3rd -- Hu, Hailan -- P41 GM103533/GM/NIGMS NIH HHS/ -- R01 MH067880/MH/NIMH NIH HHS/ -- R01 MH091119/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1016-20. doi: 10.1126/science.1240729.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P R China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23990563" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidepressive Agents/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & ; inhibitors/*biosynthesis/genetics ; Depressive Disorder, Major/*enzymology/genetics/psychology ; Disease Models, Animal ; Gene Knockdown Techniques ; Habenula/drug effects/*enzymology ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/drug effects/enzymology ; Promoter Regions, Genetic ; Proteomics ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-13
    Description: Blood gas and tissue pH regulation depend on the ability of the brain to sense CO2 and/or H(+) and alter breathing appropriately, a homeostatic process called central respiratory chemosensitivity. We show that selective expression of the proton-activated receptor GPR4 in chemosensory neurons of the mouse retrotrapezoid nucleus (RTN) is required for CO2-stimulated breathing. Genetic deletion of GPR4 disrupted acidosis-dependent activation of RTN neurons, increased apnea frequency, and blunted ventilatory responses to CO2. Reintroduction of GPR4 into RTN neurons restored CO2-dependent RTN neuronal activation and rescued the ventilatory phenotype. Additional elimination of TASK-2 (K(2P)5), a pH-sensitive K(+) channel expressed in RTN neurons, essentially abolished the ventilatory response to CO2. The data identify GPR4 and TASK-2 as distinct, parallel, and essential central mediators of respiratory chemosensitivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Natasha N -- Velic, Ana -- Soliz, Jorge -- Shi, Yingtang -- Li, Keyong -- Wang, Sheng -- Weaver, Janelle L -- Sen, Josh -- Abbott, Stephen B G -- Lazarenko, Roman M -- Ludwig, Marie-Gabrielle -- Perez-Reyes, Edward -- Mohebbi, Nilufar -- Bettoni, Carla -- Gassmann, Max -- Suply, Thomas -- Seuwen, Klaus -- Guyenet, Patrice G -- Wagner, Carsten A -- Bayliss, Douglas A -- HL074011/HL/NHLBI NIH HHS/ -- HL108609/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1255-60. doi: 10.1126/science.aaa0922. Epub 2015 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA. ; Institute of Physiology, University of Zurich, Zurich, CH-8057, Switzerland. ; Institute of Veterinary Physiology, University of Zurich, Zurich, CH-8057, Switzerland. Centre de Recherche du CHU de Quebec, Departement de Pediatrie, Faculte de Medecine, Universite Laval, Quebec, QC, Canada. ; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA. Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China. ; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA. School of Medical Sciences, University of New South Wales, New South Wales 2052, Australia. Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA. ; Novartis Institutes for Biomedical Research, Basel, CH-4002, Switzerland. ; Institute of Veterinary Physiology, University of Zurich, Zurich, CH-8057, Switzerland. ; Institute of Physiology, University of Zurich, Zurich, CH-8057, Switzerland. Wagnerca@access.uzh.ch bayliss@virginia.edu. ; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA. Wagnerca@access.uzh.ch bayliss@virginia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068853" target="_blank"〉PubMed〈/a〉
    Keywords: Acidosis, Respiratory/genetics/physiopathology ; Animals ; Carbon Dioxide/*physiology ; Female ; Gene Deletion ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Neurons/metabolism/physiology ; Potassium Channels, Tandem Pore Domain/genetics/*physiology ; Receptors, G-Protein-Coupled/antagonists & inhibitors/genetics/*physiology ; *Respiration ; Trapezoid Body/cytology/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-05
    Description: Author(s): H. J. Li (李红洁), S. J. Zhu (朱胜江), J. H. Hamilton, A. V. Ramayya, J. K. Hwang, Z. G. Xiao (肖志刚), M. Sakhaee, J. Y. Guo (郭建友), S. W. Chen (陈寿万), N. T. Brewer, S. H. Liu, K. Li, E. Y. Yeoh (杨韵颐), Z. Zhang (张钊), Y. X. Luo, J. O. Rasmussen, I. Y. Lee, G. Ter-Akopian, A. Daniel, Yu. Ts. Oganessian, and W. C. Ma High spin levels of the very neutron-rich 152 Ce have been investigated by measuring the prompt γ rays in the spontaneous fission of 252 Cf. The yrast band is confirmed and a new side-band has been identified. The side-band is tentatively assigned with negative parity and an octupole band structure wi... [Phys. Rev. C 86, 067302] Published Tue Dec 04, 2012
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-03
    Description: Author(s): S. Momiyama, P. Doornenbal, H. Scheit, S. Takeuchi, M. Niikura, N. Aoi, K. Li, M. Matsushita, D. Steppenbeck, H. Wang, H. Baba, E. Ideguchi, M. Kimura, N. Kobayashi, Y. Kondo, J. Lee, S. Michimasa, T. Motobayashi, N. Shimizu, M. Takechi, Y. Togano, Y. Utsuno, K. Yoneda, and H. Sakurai The isotope Mg 35 was spectroscopically studied via nucleon-removal reactions from Mg 36 and Al 37 secondary beams at intermediate energies. The experiment's aim was to clarify the level structure of this nucleus located in between the N = 20 and 28 shell quenchings. De-excitation γ -ray energies, exclusi... [Phys. Rev. C 96, 034328] Published Fri Sep 29, 2017
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1984-07-06
    Description: An ethanol-preferring line of rats, developed by selective breeding, consumed as much as 9.4 +/- 1.7 grams of ethanol per kilogram of body weight per day through intragastric self-infusions, yielding blood ethanol concentrations of 92 to 415 milligrams per 100 milliliters. By contrast, the ethanol- nonpreferring line self-administered only 0.7 +/- 0.2 gram per kilogram per day. These findings indicate that the reinforcing effect of ethanol is postabsorptive and is not mediated by the drug's smell or taste. Hence the ethanol-preferring line of rats may be suitable animal model of alcoholism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waller, M B -- McBride, W J -- Gatto, G J -- Lumeng, L -- Li, T K -- AA-03243/AA/NIAAA NIH HHS/ -- MH-00203/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1984 Jul 6;225(4657):78-80.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6539502" target="_blank"〉PubMed〈/a〉
    Keywords: Alcohol Drinking ; Alcoholism/*physiopathology ; Animals ; Disease Models, Animal ; Ethanol/*administration & dosage/blood/metabolism ; Humans ; Male ; Rats ; Rats, Inbred Strains ; Reinforcement (Psychology) ; Stomach/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...