ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (11)
Collection
Years
  • 1
    Publication Date: 2019-07-19
    Description: A fundamental goal of solar system exploration is to understand the origin of the solar sys-tem, the initial stages, conditions, and processes by which the solar system formed, how the formation pro-cess was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Several theories have been put forward to explain the process of solar system formation, and the origin and evolution of the giant planets and their atmospheres. Each theory offers quantifiable predictions of the abundances of noble gases He, Ne, Ar, Kr, and Xe, and abundances of key isotopic ratios 4He3He, DH, 15N14N, 18O16O, and 13C12C. Detection of certain dis-equilibrium species, diagnostic of deeper internal pro-cesses and dynamics of the atmosphere, would also help discriminate between competing theories. Measurements of the critical abundance profiles of these key constituents into the deeper well-mixed at-mosphere must be complemented by measurements of the profiles of atmospheric structure and dynamics at high vertical resolution and also require in situ explora-tion. The atmospheres of the giant planets can also serve as laboratories to better understand the atmospheric chem-istries, dynamics, processes, and climates on all planets including Earth, and offer a context and provide a ground truth for exoplanets and exoplanetary systems. Additionally, Giant planets have long been thought to play a critical role in the development of potentially habitable planetary systems. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Sat-urn, a small, relatively shallow Saturn probe capable of measuring abundances and isotopic ratios of key at-mospheric constituents, and atmospheric structure in-cluding pressures, temperatures, dynamics, and cloud locations and properties not accessible by remote sens-ing can serve to test competing theories of solar system and giant planet origin, chemical, and dynamical evolution.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN15235 , International Planetary Probe Workshop; Jun 16, 2014 - Jun 20, 2014; Pasadena, California; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The massive eruption at 40 deg. N (planetographic latitude) on Saturn in 2010 December has produced significant and lasting effects in the northern hemisphere on temperature and species abundances. The northern storm region was observed on many occasions in 2011 by Cassini's Composite Infrared Spectrometer (CIRS). In 2011 May, temperatures in the stratosphere greater than 200 K were derived from CIRS spectra in the regions referred to as "beacons" (warm regions in the stratosphere). Ethylene has been detected in the beacon region in Saturn's northern storm region using CIRS. Ground-based observations using the high-resolution spectrometer Celeste on the McMath-Pierce Telescope on 2011 May 15 were used to confirm the detection and improve the altitude resolution in the retrieved profile. The derived ethylene profile from the CIRS data gives a C2H4 mole fraction of 5.9 +/- 4.5 x 10(exp -7) at 0.5 mbar, and from Celeste data it gives 2.7 +/- 0.45 x 10(exp -6) at 0.1 mbar. This is two orders of magnitude higher than the amount measured in the ultraviolet at other latitudes prior to the storm. It is also much higher than predicted by photochemical models, indicating that perhaps another production mechanism is required or a loss mechanism is being inhibited.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN6335
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: We acquired and analyzed mid-infrared images of Jupiter's disk at selected wavelengths from NASA's Infrared Telescope Facility (IRTF) from 1996 to 2011, including a period of large-scale changes of cloud color and albedo. We derived the 100-300 mbar temperature structure, together with tracers of vertical motion: the thickness of a 600- mbar cloud layer, the 300-mbar abundance of the condensable gas NH3, and the 400- mbar para- vs. ortho-H2 ratio. The biggest visual change was detected in the normally dark South Equatorial Belt (SEB) that 'faded' to a light color in 2010, during which both cloud thickness and NH3 abundance rose; both returned to their pre-fade levels in 2011, as the SEB regained its normal dark color. The cloud thickness in Jupiter's North Temperate Belt (NTB) increased in 2002, coincident with its visible brightening, and its NH3 abundance spiked in 2002-2003. Jupiter's Equatorial Zone (EZ), a region marked by more subtle but widespread color and albedo change, showed high cloud thickness variability between 2007 and 2009. In Jupiter's North Equatorial Belt (NEB), the cloud thickened in 2005, then slowly decreased to a minimum value in 2010-2011. No temperature variations were associated with any of these changes, but we discovered temperature oscillations of approx.2-4 K in all regions, with 4- or 8-year periods and phasing that was dissimilar in the different regions. There was also no detectable change in the para- vs. ortho-H2 ratio over time, leading to the possibility that it is driven from much deeper atmospheric levels and may be time-invariant. Our future work will continue to survey the variability of these properties through the Juno mission, which arrives at Jupiter in 2016, and to connect these observations with those made using raster-scanned images from 1980 to 1993 (Orton et al. 1996 Science 265, 625).
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.00450.2012 , Asia Oceania Geosciences Society; Aug 13, 2012 - Aug 17, 2012; Sentosa Island; Singapore
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present new measurements of the deuterium abundance on Jupiter and Saturn, showing evidence that Saturn's atmosphere contains less deuterium than Jupiter's. We analyzed far-infrared spectra from the Cassini Composite Infrared Spectrometer to measure the abundance of HD on both giant planets. Our estimate of the Jovian D/H = (2.95 +/- 0.55) x 10(exp -5) is in agreement with previous measurements by ISO/SWS: (2.25 +/- 0.35) x 10(exp -5), and the Galileo probe: (2.6 +/- 0.7) x 10(exp -5). In contrast, our estimate of the Saturn value of (2.10 +/- 0.13) x 10(exp -5) is somewhat lower than on Jupiter (by a factor of 0.71(sub -0.15, sup +0..22)), contrary to model predictions of a higher ratio: Saturn/ Jupiter = 1.05-1.20. The Saturn D/H value is consistent with estimates for hydrogen in the protosolar nebula (2.1 +/- 0.5) x 10(exp -5), but its apparent divergence from the Jovian value suggests that our understanding of planetary formation and evolution is incomplete, which is in agreement with previous work.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN51137 , The Astronomical Journal (ISSN 0004-6256) (e-ISSN 1538-3881); 154; 5; 178
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The seasonal evolution of Saturn's polar atmospheric temperatures and hydrocarbon composition is derived from a decade of Cassini Composite Infrared Spectrometer (CIRS) 7-16 micrometers thermal infrared spectroscopy. We construct a near-continuous record of atmospheric variability poleward of 60 deg from northern winter/southern summer (2004, Ls = 293 deg) through the equinox (2009, Ls= 0 deg) to northern spring/southern autumn (2014, Ls = 56 deg). The hot tropospheric polar cyclones that are entrained by pro-grade jets within 2-3 deg of each pole, and the hexagonal shape of the north polar belt, are both persistent features throughout the decade of observations. The hexagon vertices rotated westward by approx. equal to 30 deg longitude between March 2007 and April 2013, confirming that they are not stationary in the Voyager-defined System III longitude system as previously thought. Tropospheric temperature contrasts between the cool polar zones (near 80-85 deg) and warm polar belts (near 75-80 deg) have varied in both hemispheres, resulting in changes to the vertical wind shear on the zonal jets in the upper troposphere and lower stratosphere. The extended region of south polar stratospheric emission has cooled dramatically poleward of the sharp temperature gradient near 75 deg S (by approximately -5 K/yr), coinciding with a depletion in the abundances of acetylene (0030 +/- 0.005 ppm/yr) and ethane (0.35 +/- 0.1 ppm/yr), and suggestive of stratospheric upwelling with vertical wind speeds of w approx. equal to +0.1 mm/s. The upwelling appears most intense within 5 deg latitude of the south pole. This is mirrored by a general warming of the northern polar stratosphere (+5 K/yr) and an enhancement in acetylene (0.030 +/- 0.003 ppm/yr) and ethane (0.45 +/- 0.1 ppm/yr) abundances that appears to be most intense poleward of 75 deg N, suggesting subsidence at w approx. equal to -0.15 mm/ s. However, the sharp gradient in stratospheric emission expected to form near 75 deg N by northern summer solstice (2017, Ls = 90 deg) has not yet been observed, so we continue to await the development of a northern summer stratospheric vortex. The peak stratospheric warming in the north occurs at lower pressure levels (p less than 1 mbar) than the peak stratospheric cooling in the south (p greater than 1 mbar). Vertical motions are derived from both the temperature field (using the measured rates of temperature change and the deviations from the expectations of radiative equilibrium models) and hydrocarbon distributions (solving the continuity equation). Vertical velocities tend towards zero in the upper troposphere where seasonal temperature contrasts are smaller, except within the tropospheric polar cyclones where w approx. equal to +0.02 mm/s. North polar minima in tropospheric and stratospheric temperatures were detected in 2008-2010 (lagging one season, or 6-8 years, behind winter solstice); south polar maxima appear to have occurred before the start of the Cassini observations (1-2 years after summer solstice), consistent with the expectations of radiative climate models. The influence of dynamics implies that the coldest winter temperatures occur in the 75-80 deg region in the stratosphere, and in the cool polar zones in the troposphere, rather than at the poles themselves. In addition to vertical motions, we propose that the UV-absorbent polar stratospheric aerosols entrained within Saturn's vortices contribute significantly to the radiative budget at the poles, adding to the localized enhancement in the south polar cooling and north polar warming poleward of +/-75 deg.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN21255 , Icarus (ISSN 0019-1035); 250; 131-153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustratedby the exploration of Jupiter, where key measurements such as the determination of the noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scienti-c goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussedthroughout this paper : rst, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopiccomposition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk OH ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to mostextrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Dierent mission architectures are envisaged, which would benet from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bars of atmospheric pressure. We rally discuss the science payload required on a Saturn probe to match the measurement requirements.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN19065 , Planetary and Space Sciences Journal; 104; A; 29-47
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009. The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 micron. The impact cloud expanded zonally from approximately 5000 km (July 19) to 225,000 km (29 October, about 180 deg in longitude), remaining meridionally localized within a latitude band from 53.5 deg S to 61.5 deg S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact's energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5 deg S latitude increases its eastward velocity with altitude above the tropopause by 5- 10 m/s. The corresponding vertical wind shear is low, about 1 m/s per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 m/s. Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased exponentially with a characteristic timescale of 15 days; we can explain this behavior with a radiative transfer model of the cloud optical depth coupled to an advection model of the cloud dispersion by the wind shears. The expected sedimentation time in the stratosphere (altitude levels 5-100 mbar) for the small aerosol particles forming the cloud is 45-200 days, thus aerosols were removed vertically over the long term following their zonal dispersion. No evidence of the cloud was detected 10 months after the impact.
    Keywords: Lunar and Planetary Science and Exploration
    Type: YICAR 9758 , GSFC.JA.4469.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN14055 , European Geosciences Union EGU 2014 Conference; Apr 27, 2014 - May 02, 2014; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We report Hubble Space Telescope images of Jupiter during the aftermath of an impact by an unknown object in 2009 July, The 2009 impact-created debris field evolved more slowly than those created in 1994 by the collision of the tidally disrupted comet D/Shoemaker-Levy 9 (SL9). The slower evolution, in conjunction with the isolated nature of this single impact, permits a more detailed assessment of the altitudes and meridional motion of the debris than was possible with SL9. The color of the 2009 debris was markedly similar to that seen in 1994, thus this dark debris is likely to be Jovian material that is highly thermally processed. The 2009 impact site differed from the 1994 SL9 sites in UV morphology and contrast lifetime; both are suggestive of the impacting body being asteroidal rather than cometary. Transport of the 2009 Jovian debris as imaged by Hubble shared similarities with transport of volcanic aerosols in Earth's atmosphere after major eruptions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrophysical Journal Letters; 715; 2; L150-L154
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-14
    Description: The Little Red Spot (LRS) in Jupiter's atmosphere was investigated in unprecedented detail by the New Horizons spacecraft together with the Hubble Space Telescope (HST) and the Very Large Telescope (VLT). The LRS and the larger Great Red Spot (GRS) of Jupiter are the largest known atmospheric storms in the solar system. Originally a white oval, the LRS formed from the mergers of three smaller storms in 1998 and 2000 and became as red as the GRS between 2005 and 2006. Here we show that circulation and wind speeds in the LRS have increased substantially since the Voyager and Galileo eras when the oval was white. The maximum tangential velocity of the LRS is now 172 +/- 18 m/s, close to the highest values ever seen in the GRS, which has also evolved both in size and maximum wind speed. The cloud top altitudes of the GRS and LRS are similar, both storms extending much higher in the atmosphere than other Jovian anticyclonic systems. The similarities in wind speeds, cloud morphology, and coloring suggest a common dynamical mechanism explains the reddening of the two largest anticyclonic systems on Jupiter. These storms will not be observed again from close range until at least 2016.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...