ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-14
    Description: Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARES Biennial Report 2012 Final; 37-40; JSC-CN-30442
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The dynamical and physical characteristics of a meteoroid affects its behavior in the atmosphere and the damage it does to spacecraft surfaces. Accurate environment models must therefore correctly describe the speed, size, density, and direction of meteoroids. However, the measurement of dynamical characteristics such as speed is subject to observational biases, and physical properties such as size and density cannot be directly measured. De-biasing techniques and proxies are needed to overcome these challenges. In this presentation, we discuss several recent improvements to the derivation of the meteoroid velocity, directionality, and bulk density distributions. We derive our speed distribution from observations made by the Canadian Meteor Orbit Radar. These observations are de-biased using modern descriptions of the ionization efficiency and sharpened to remove the effects of measurement uncertainty, and the result is a meteoroid speed distribution that is skewed slower than in previous analyses. We also adopt a higher fidelity density distribution than that used by many older models. In our distribution, meteoroids with T(sub J) less than 2 are assigned to a low-density population, while those with T(sub J) greater than 2 have higher densities. This division and the distributions themselves are derived from the densities reported by Kikwaya et al. (2009, 2011). These changes have implications for the environment. For instance, helion and antihelion meteors have lower speeds and higher densities than apex and toroidal meteors. A slower speed distribution therefore corresponds to a sporadic environment that is more completely dominated by the helion and antihelion sources than in previous models. Finally, assigning these meteors high densities further increases their significance from a spacecraft damage perspective.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M17-6169 , American Geophysical Union (AGU) Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The 1.42- to 2.40-micrometer spectrum of Kuiper belt object 1993SC was measured at the Keck Observatory in October 1996. It shows a strongly red continuum reflectance and several prominent infrared absorption features. The strongest absorptions in 1993SC's spectrum occur near 1.62, 1.79, 1.95, 2.20, and 2.32 micrometers in wavelength. Features near the same wavelengths in the spectra of Pluto and Neptune's satellite Triton are due to CH4 on their surfaces, suggesting the presence of a simple hydrocarbon ice such as CH4, C2H6, C2H4, or C2H2 on 1993SC. In addition, the red continuum reflectance of 1993SC suggests the presence of more complex hydrocarbons.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 276; 5314; 937-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Spectra of the Centaur 1997 CU26 were obtained at the Keck Observatory on 27 October 1997 (universal time). The data show strong absorptions at 1.52 and 2.03 micrometers attributable to water ice on the surface of 1997 CU26. The reflectance spectrum of 1997 CU26 is matched by the spectrum of a mixture of low-temperature, particulate water ice and spectrally featureless but otherwise red-colored material. Water ice dominates the spectrum of 1997 CU26, whereas methane or methane-like hydrocarbons apparently dominate the spectrum of the Kuiper belt object 1993 SC, perhaps indicating different origins, thermal histories, or both for these two objects.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 280; 5368; 1430-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Elevations measured by the Mars Orbiter Laser Altimeter have yielded a high-accuracy global map of the topography of Mars. Dominant features include the low northern hemisphere, the Tharsis province, and the Hellas impact basin. The northern hemisphere depression is primarily a long-wavelength effect that has been shaped by an internal mechanism. The topography of Tharsis consists of two broad rises. Material excavated from Hellas contributes to the high elevation of the southern hemisphere and to the scarp along the hemispheric boundary. The present topography has three major drainage centers, with the northern lowlands being the largest. The two polar cap volumes yield an upper limit of the present surface water inventory of 3.2 to 4.7 million cubic kilometers.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 284; 5419; 1495-503
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-02
    Description: The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI) [1]. The MI is a fixed-focus camera mounted on the end of an extendable instrument arm, the Instrument Deployment Device (IDD; see Figure 1).The MI was designed to acquire images at a spatial resolution of 30 microns/pixel over a broad spectral range (400 - 700 nm; see Table 1). Technically, the microscopic imager is not a microscope: it has a fixed magnification of 0.4 and is intended to produce images that simulate a geologist s view through a common hand lens. In photographers parlance, the system makes use of a macro lens. The MI uses the same electronics design as the other MER cameras [2, 3] but has optics that yield a field of view of 31 31 mm across a 1024 1024 pixel CCD image (Figure 2). The MI acquires images using only solar or skylightillumination of the target surface. A contact sensor is used to place the MI slightly closer to the target surface than its best focus distance (about 66 mm), allowing concave surfaces to be imaged in good focus. Because the MI has a relatively small depth of field (3 mm), a single MI image of a rough surface will contain both focused and unfocused areas. Coarse focusing will be achieved by moving the IDD away from a rock target after the contact sensor is activated. Multiple images taken at various distances will be acquired to ensure good focus on all parts of rough surfaces. By combining a set of images acquired in this way, a completely focused image can be assembled. Stereoscopic observations can be obtained by moving the MI laterally relative to its boresight. Estimates of the position and orientation of the MI for each acquired image will be stored in the rover computer and returned to Earth with the image data. The MI optics will be protected from the Martian environment by a retractable dust cover. The dust cover includes a Kapton window that is tinted orange to restrict the spectral bandpass to 500-700 nm, allowing color information to be obtained by taking images with the dust cover open and closed. The MI will image the same materials measured by other Athena instruments (including surfaces prepared by the Rock Abrasion Tool), as well as rock and soil targets of opportunity. Subsets of the full image array can be selected and/or pixels can be binned to reduce data volume. Image compression will be used to maximize the information contained in the data returned to Earth. The resulting MI data will place other MER instrument data in context and aid in petrologic and geologic interpretations of rocks and soils on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-02
    Description: We present results for low temperature and pressure experiments of ice formation. These experiments were performed for comparison to Kuiper Belt Objects.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-08
    Description: The hydrogen-broadened line widths of 116 (sup 14)NH(sub 3) ground state transitions have been measured at 0.006 cm(sup -1) resolution using a Bruker spectrometer in the 24 to 210 cm(sup -1) region. The rotational variation of the experimental widths with J(sup '),K(sup ') = 1,0 to 10,10 has been reproduced to 2.4 % using an heuristically derived expression of the form 〈BR〉〈BR〉gamma = a(sub 0) + a(sub 1) J(sup ') + a (sub 2) K(sup ') + a(sub 3) J(sup ')(sup 2) + a(sub 4) J(sup ') K(sup ') 〈BR〉〈BR〉 where J(sup ') and K(sup ') are the lower state symmetric top quantum numbers. This function has also been applied to the measured widths of the 58 transitions of nu(sub 1) at 3 (micro)m, each broadened by N(sub 2), O(sub 2), Ar, H(sub 2), and He. The rms of the observed minus calculated widths are 5% or better for the five foreign broadeners. The values of the fitted constants suggest that for some broadeners the expression might also be written as 〈BR〉〈BR〉 gamma = a(sub 0) + b(sub 1) J(sup ') + b(sub 2)(J(sup ' )- K(sup ')) + b(sub 3) J(sup ')(J(sup ') - K(sup ')) 〈BR〉〈BR〉.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-08
    Description: To correlate our laboratory results with the Voyager observations of Triton and ground-based observations of Pluto, we have calculated the nitrogen deposition rates on these bodies.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-08
    Description: We report a significant advance in space robotics design based on innovation of 3D composite structures and piezoelectronic actuation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Smart Structures and Integrated Systems; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...