ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-10-16
    Description: Analysis of rhesus macaque leukocytes disclosed the presence of an 18-residue macrocyclic, tridisulfide antibiotic peptide in granules of neutrophils and monocytes. The peptide, termed rhesus theta defensin-1 (RTD-1), is microbicidal for bacteria and fungi at low micromolar concentrations. Antibacterial activity of the cyclic peptide was threefold greater than that of an open-chain analog, and the cyclic conformation was required for antimicrobial activity in the presence of 150 millimolar sodium chloride. Biosynthesis of RTD-1 involves the head-to-tail ligation of two alpha-defensin-related nonapeptides, requiring the formation of two new peptide bonds. Thus, host defense cells possess mechanisms for synthesis and granular packaging of macrocyclic antibiotic peptides that are components of the phagocyte antimicrobial armamentarium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Y Q -- Yuan, J -- Osapay, G -- Osapay, K -- Tran, D -- Miller, C J -- Ouellette, A J -- Selsted, M E -- AI22931/AI/NIAID NIH HHS/ -- DK33506/DK/NIDDK NIH HHS/ -- DK44632/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):498-502.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, College of Medicine, University of California, Irvine, CA 92697, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521339" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Bacterial Agents ; Anti-Infective Agents/chemistry/*metabolism/pharmacology ; Bacteria/drug effects ; Cloning, Molecular ; Defensins ; Disulfides/chemistry ; Fungi/drug effects ; Humans ; Leukopoiesis ; Macaca mulatta ; Molecular Sequence Data ; Monocytes/*metabolism ; Neutrophils/*metabolism ; Oligopeptides/chemistry/genetics/metabolism ; Osmolar Concentration ; Peptides, Cyclic/*biosynthesis/chemistry/genetics/pharmacology ; *Protein Biosynthesis ; Protein Conformation ; Protein Precursors/chemistry/genetics/metabolism ; Protein Processing, Post-Translational ; Proteins/chemistry/genetics/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-09-28
    Description: The prevailing view is that the popular recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, or "ecstasy") is a selective serotonin neurotoxin in animals and possibly in humans. Nonhuman primates exposed to several sequential doses of MDMA, a regimen modeled after one used by humans, developed severe brain dopaminergic neurotoxicity, in addition to less pronounced serotonergic neurotoxicity. MDMA neurotoxicity was associated with increased vulnerability to motor dysfunction secondary to dopamine depletion. These results have implications for mechanisms of MDMA neurotoxicity and suggest that recreational MDMA users may unwittingly be putting themselves at risk, either as young adults or later in life, for developing neuropsychiatric disorders related to brain dopamine and/or serotonin deficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ricaurte, George A -- Yuan, Jie -- Hatzidimitriou, George -- Cord, Branden J -- McCann, Una D -- DA 00206/DA/NIDA NIH HHS/ -- DA 09487/DA/NIDA NIH HHS/ -- DA 10217/DA/NIDA NIH HHS/ -- DA 13790/DA/NIDA NIH HHS/ -- DA 5707/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 27;297(5590):2260-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA. Ricaurte@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351788" target="_blank"〉PubMed〈/a〉
    Keywords: 3,4-Dihydroxyphenylacetic Acid/metabolism ; Animals ; Autoradiography ; Axons/drug effects/metabolism/ultrastructure ; Brain/*drug effects/metabolism/ultrastructure ; Carrier Proteins/metabolism ; Corpus Striatum/drug effects/metabolism/ultrastructure ; Dopamine/*metabolism ; Dopamine Plasma Membrane Transport Proteins ; Female ; Hallucinogens/administration & dosage/adverse effects/*toxicity ; Humans ; Hydroxyindoleacetic Acid/metabolism ; Male ; Membrane Glycoproteins/metabolism ; Membrane Transport Proteins/metabolism ; Motor Activity/drug effects ; N-Methyl-3,4-methylenedioxyamphetamine/administration & dosage/adverse ; effects/*toxicity ; Nerve Degeneration ; *Nerve Tissue Proteins ; Neurons/drug effects/*metabolism ; Norepinephrine/metabolism ; Norepinephrine Plasma Membrane Transport Proteins ; Papio ; Parkinsonian Disorders/chemically induced ; Saimiri ; Serotonin/metabolism ; Serotonin Plasma Membrane Transport Proteins ; Symporters/metabolism ; Tremor/chemically induced ; Tyrosine 3-Monooxygenase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-05-30
    Description: Despite myriads of biological activities ascribed to uteroglobin (UG), a steroid-inducible secreted protein, its physiological functions are unknown. Mice in which the uteroglobin gene was disrupted had severe renal disease that was associated with massive glomerular deposition of predominantly multimeric fibronectin (Fn). The molecular mechanism that normally prevents Fn deposition appears to involve high-affinity binding of UG with Fn to form Fn-UG heteromers that counteract Fn self-aggregation, which is required for abnormal tissue deposition. Thus, UG is essential for maintaining normal renal function in mice, which raises the possibility that an analogous pathogenic mechanism may underlie genetic Fn-deposit human glomerular disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Z -- Kundu, G C -- Yuan, C J -- Ward, J M -- Lee, E J -- DeMayo, F -- Westphal, H -- Mukherjee, A B -- HL47620/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 May 30;276(5317):1408-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Developmental Genetics, Heritable Disorders Branch, National Institute of Child Health and Human Development (NICHD), National Insitutes of Health (NIH), Bethesda, MD 20892-1830, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9162006" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Crosses, Genetic ; Fibronectins/*metabolism ; Gene Targeting ; Humans ; Kidney Diseases/embryology/genetics/pathology ; *Kidney Glomerulus/embryology/metabolism/ultrastructure ; Mice ; Mice, Inbred C57BL ; Uteroglobin/deficiency/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-07-31
    Description: Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent on its ability to accumulate at or near sites of DNA damage and that relies on mono-ubiquitylation of the ID complex. Thus, the mono-ubiquitylated ID complex recruits the downstream repair protein FAN1 and facilitates the repair of DNA interstrand cross-links.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Ting -- Ghosal, Gargi -- Yuan, Jingsong -- Chen, Junjie -- Huang, Jun -- New York, N.Y. -- Science. 2010 Aug 6;329(5992):693-6. doi: 10.1126/science.1192656. Epub 2010 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cell Nucleus/metabolism ; DNA/*metabolism ; DNA Damage ; *DNA Repair ; Exodeoxyribonucleases/chemistry/genetics/*metabolism ; Fanconi Anemia Complementation Group D2 Protein/*metabolism ; Fanconi Anemia Complementation Group Proteins/*metabolism ; Gene Knockdown Techniques ; HeLa Cells ; Humans ; Mitomycin/pharmacology ; Molecular Sequence Data ; Mutant Proteins/metabolism ; Protein Binding ; Ubiquitinated Proteins/metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Jinkai -- Poulin, Philippe -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):845-6. doi: 10.1126/science.1250471.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Recherche Paul Pascal, CNRS, Universite de Bordeaux, 115 Avenue Schweitzer, 33600 Pessac, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24558149" target="_blank"〉PubMed〈/a〉
    Keywords: *Cotton Fiber ; Humans ; *Nylons ; *Tensile Strength ; *Torsion, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2012-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Wen -- Yuan, Junying -- England -- Nature. 2012 Dec 13;492(7428):194-5. doi: 10.1038/nature11761. Epub 2012 Nov 28.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23201692" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Humans ; Male ; Necrosis/*enzymology ; Sirtuin 2/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-01-07
    Description: Interleukin-6 (IL-6), leukemia inhibitory factor, oncostatin M, interleukin-11, and ciliary neurotrophic factor bind to receptor complexes that share the signal transducer gp130. Upon binding, the ligands rapidly activate DNA binding of acute-phase response factor (APRF), a protein antigenically related to the p91 subunit of the interferon-stimulated gene factor-3 alpha (ISGF-3 alpha). These cytokines caused tyrosine phosphorylation of APRF and ISGF-3 alpha p91. Protein kinases of the Jak family were also rapidly tyrosine phosphorylated, and both APRF and Jak1 associated with gp130. These data indicate that Jak family protein kinases may participate in IL-6 signaling and that APRF may be activated in a complex with gp130.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lutticken, C -- Wegenka, U M -- Yuan, J -- Buschmann, J -- Schindler, C -- Ziemiecki, A -- Harpur, A G -- Wilks, A F -- Yasukawa, K -- Taga, T -- New York, N.Y. -- Science. 1994 Jan 7;263(5143):89-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biochemistry, RWTH Aachen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8272872" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigens, CD ; Base Sequence ; Cytokine Receptor gp130 ; Cytokines/pharmacology ; DNA-Binding Proteins/*metabolism ; Humans ; Interferon-Stimulated Gene Factor 3 ; Interferon-Stimulated Gene Factor 3, gamma Subunit ; Interferon-gamma/pharmacology ; Interleukin-6/*pharmacology ; Janus Kinase 1 ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; Signal Transduction ; *Trans-Activators ; Transcription Factors/metabolism ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-22
    Description: The immune system develops in waves during ontogeny; it is initially populated by cells generated from fetal hematopoietic stem cells (HSCs) and later by cells derived from adult HSCs. Remarkably, the genetic programs that control these two distinct stem cell fates remain poorly understood. We report that Lin28b is specifically expressed in mouse and human fetal liver and thymus, but not in adult bone marrow or thymus. We demonstrate that ectopic expression of Lin28 reprograms hematopoietic stem/progenitor cells (HSPCs) from adult bone marrow, which endows them with the ability to mediate multilineage reconstitution that resembles fetal lymphopoiesis, including increased development of B-1a, marginal zone B, gamma/delta (gammadelta) T cells, and natural killer T (NKT) cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471381/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471381/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Joan -- Nguyen, Cuong K -- Liu, Xiuhuai -- Kanellopoulou, Chrysi -- Muljo, Stefan A -- ZIA AI001131-02/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 9;335(6073):1195-200. doi: 10.1126/science.1216557. Epub 2012 Feb 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22345399" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*physiology ; Animals ; B-Lymphocyte Subsets/cytology/immunology/physiology ; B-Lymphocytes/cytology/*physiology ; Bone Marrow Cells/metabolism ; Cell Lineage ; DNA-Binding Proteins/genetics/*metabolism ; Fetal Blood/cytology ; Fetus ; Flow Cytometry ; Hematopoietic Stem Cells/*physiology ; Humans ; Liver/embryology/metabolism ; *Lymphopoiesis ; Mice ; Mice, Inbred C57BL ; MicroRNAs/genetics/metabolism ; Natural Killer T-Cells/cytology/immunology/physiology ; RNA-Binding Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; T-Lymphocyte Subsets/cytology/immunology/physiology ; T-Lymphocytes/cytology/*physiology ; Thymus Gland/embryology/metabolism ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-03-15
    Description: Immune checkpoint inhibitors, which unleash a patient's own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non-small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti-PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti-PD-1 therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rizvi, Naiyer A -- Hellmann, Matthew D -- Snyder, Alexandra -- Kvistborg, Pia -- Makarov, Vladimir -- Havel, Jonathan J -- Lee, William -- Yuan, Jianda -- Wong, Phillip -- Ho, Teresa S -- Miller, Martin L -- Rekhtman, Natasha -- Moreira, Andre L -- Ibrahim, Fawzia -- Bruggeman, Cameron -- Gasmi, Billel -- Zappasodi, Roberta -- Maeda, Yuka -- Sander, Chris -- Garon, Edward B -- Merghoub, Taha -- Wolchok, Jedd D -- Schumacher, Ton N -- Chan, Timothy A -- K23 CA149079/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):124-8. doi: 10.1126/science.aaa1348. Epub 2015 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. chant@mskcc.org. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Immune Monitoring Core, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Computation Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Mathematics, Columbia University, New York, NY, 10027, USA. ; Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; David Geffen School of Medicine at UCLA, 2825 Santa Monica Boulevard, Suite 200, Santa Monica, CA 90404, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Weill Cornell Medical College, New York, NY, 10065, USA. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. chant@mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25765070" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal, Humanized/*therapeutic use ; Antineoplastic Agents/*therapeutic use ; CD8-Positive T-Lymphocytes/immunology ; Carcinoma, Non-Small-Cell Lung/*drug therapy/*genetics/immunology ; Cohort Studies ; DNA Repair/genetics ; Disease-Free Survival ; Drug Resistance, Neoplasm/*genetics ; Humans ; Lung Neoplasms/*drug therapy/*genetics/immunology ; Mutation ; Programmed Cell Death 1 Receptor/*antagonists & inhibitors ; Smoking/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-03-25
    Description: Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway. In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with breast or ovarian cancers. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases. In particular, little is known about BRCA1-independent restoration of HR. Here we show that loss of REV7 (also known as MAD2L2) in mouse and human cell lines re-establishes CTIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, which is reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX-MDC1-RNF8-RNF168-53BP1 chromatin pathway, and seems to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining during immunoglobulin class switch recombination. Our results reveal an unexpected crucial function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Guotai -- Chapman, J Ross -- Brandsma, Inger -- Yuan, Jingsong -- Mistrik, Martin -- Bouwman, Peter -- Bartkova, Jirina -- Gogola, Ewa -- Warmerdam, Daniel -- Barazas, Marco -- Jaspers, Janneke E -- Watanabe, Kenji -- Pieterse, Mark -- Kersbergen, Ariena -- Sol, Wendy -- Celie, Patrick H N -- Schouten, Philip C -- van den Broek, Bram -- Salman, Ahmed -- Nieuwland, Marja -- de Rink, Iris -- de Ronde, Jorma -- Jalink, Kees -- Boulton, Simon J -- Chen, Junjie -- van Gent, Dik C -- Bartek, Jiri -- Jonkers, Jos -- Borst, Piet -- Rottenberg, Sven -- 090532/Wellcome Trust/United Kingdom -- 104558/Wellcome Trust/United Kingdom -- P30 CA016672/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2015 May 28;521(7553):541-4. doi: 10.1038/nature14328. Epub 2015 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands. ; The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK. ; Department of Genetics, Erasmus, University Medical Center, 3000 CA Rotterdam, The Netherlands. ; Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic. ; Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands. ; Danish Cancer Society Research Center, 2100 Copenhagen, Denmark. ; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands. ; Protein Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands. ; Deep Sequencing Core Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands. ; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands. ; DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, Hertfordshire EN6 3LD, UK. ; 1] Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic [2] Danish Cancer Society Research Center, 2100 Copenhagen, Denmark. ; 1] Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands [2] Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Laengassstrasse 122, 3012 Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799992" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors/metabolism ; BRCA1 Protein/deficiency/genetics/metabolism ; Cell Line ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; *DNA Breaks, Double-Stranded ; DNA-Binding Proteins/metabolism ; Drug Resistance, Neoplasm/genetics ; Histones/metabolism ; Humans ; Immunoglobulin Class Switching/genetics ; Intracellular Signaling Peptides and Proteins/metabolism ; Mad2 Proteins/deficiency/genetics/*metabolism ; Mice ; Nuclear Proteins/metabolism ; *Poly(ADP-ribose) Polymerase Inhibitors ; *Recombinational DNA Repair ; Trans-Activators/metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...