ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-09-04
    Description: Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping points at which a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical points before they are reached is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that may indicate for a wide class of systems if a critical threshold is approaching.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheffer, Marten -- Bascompte, Jordi -- Brock, William A -- Brovkin, Victor -- Carpenter, Stephen R -- Dakos, Vasilis -- Held, Hermann -- van Nes, Egbert H -- Rietkerk, Max -- Sugihara, George -- England -- Nature. 2009 Sep 3;461(7260):53-9. doi: 10.1038/nature08227.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Sciences, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. marten.scheffer@wur.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19727193" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asthma/physiopathology ; Climate ; *Ecosystem ; Eutrophication ; Extinction, Biological ; Humans ; *Models, Biological ; *Models, Economic ; Seizures/physiopathology ; Stochastic Processes
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-23
    Description: Tipping points in complex systems may imply risks of unwanted collapse, but also opportunities for positive change. Our capacity to navigate such risks and opportunities can be boosted by combining emerging insights from two unconnected fields of research. One line of work is revealing fundamental architectural features that may cause ecological networks, financial markets, and other complex systems to have tipping points. Another field of research is uncovering generic empirical indicators of the proximity to such critical thresholds. Although sudden shifts in complex systems will inevitably continue to surprise us, work at the crossroads of these emerging fields offers new approaches for anticipating critical transitions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheffer, Marten -- Carpenter, Stephen R -- Lenton, Timothy M -- Bascompte, Jordi -- Brock, William -- Dakos, Vasilis -- van de Koppel, Johan -- van de Leemput, Ingrid A -- Levin, Simon A -- van Nes, Egbert H -- Pascual, Mercedes -- Vandermeer, John -- 268732/European Research Council/International -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):344-8. doi: 10.1126/science.1225244.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Sciences, Wageningen University, Post Office Box 47, NL-6700 AA Wageningen, Netherlands. marten.scheffer@wur.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23087241" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Forecasting ; Humans ; Risk Assessment/*statistics & numerical data
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-09
    Description: Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale 'tipping point' highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barnosky, Anthony D -- Hadly, Elizabeth A -- Bascompte, Jordi -- Berlow, Eric L -- Brown, James H -- Fortelius, Mikael -- Getz, Wayne M -- Harte, John -- Hastings, Alan -- Marquet, Pablo A -- Martinez, Neo D -- Mooers, Arne -- Roopnarine, Peter -- Vermeij, Geerat -- Williams, John W -- Gillespie, Rosemary -- Kitzes, Justin -- Marshall, Charles -- Matzke, Nicholas -- Mindell, David P -- Revilla, Eloy -- Smith, Adam B -- R01 GM069801/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Jun 6;486(7401):52-8. doi: 10.1038/nature11018.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology, University of California, Berkeley, California 94720, USA. barnosky@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22678279" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Climate Change/*statistics & numerical data ; *Earth (Planet) ; *Ecosystem ; Environmental Monitoring ; Forecasting ; Human Activities ; Humans ; *Models, Theoretical
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...