ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-03-30
    Description: H(+)-translocating pyrophosphatases (H(+)-PPases) are active proton transporters that establish a proton gradient across the endomembrane by means of pyrophosphate (PP(i)) hydrolysis. H(+)-PPases are found primarily as homodimers in the vacuolar membrane of plants and the plasma membrane of several protozoa and prokaryotes. The three-dimensional structure and detailed mechanisms underlying the enzymatic and proton translocation reactions of H(+)-PPases are unclear. Here we report the crystal structure of a Vigna radiata H(+)-PPase (VrH(+)-PPase) in complex with a non-hydrolysable substrate analogue, imidodiphosphate (IDP), at 2.35 A resolution. Each VrH(+)-PPase subunit consists of an integral membrane domain formed by 16 transmembrane helices. IDP is bound in the cytosolic region of each subunit and trapped by numerous charged residues and five Mg(2+) ions. A previously undescribed proton translocation pathway is formed by six core transmembrane helices. Proton pumping can be initialized by PP(i) hydrolysis, and H(+) is then transported into the vacuolar lumen through a pathway consisting of Arg 242, Asp 294, Lys 742 and Glu 301. We propose a working model of the mechanism for the coupling between proton pumping and PP(i) hydrolysis by H(+)-PPases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Shih-Ming -- Tsai, Jia-Yin -- Hsiao, Chwan-Deng -- Huang, Yun-Tzu -- Chiu, Chen-Liang -- Liu, Mu-Hsuan -- Tung, Jung-Yu -- Liu, Tseng-Huang -- Pan, Rong-Long -- Sun, Yuh-Ju -- England -- Nature. 2012 Mar 28;484(7394):399-403. doi: 10.1038/nature10963.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22456709" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Diphosphonates/chemistry/metabolism ; Fabaceae/*enzymology ; Hydrolysis ; Inorganic Pyrophosphatase/*chemistry/*metabolism ; Magnesium/metabolism ; Membrane Proteins/*chemistry/metabolism ; Models, Molecular ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protons ; Static Electricity ; Vacuoles/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-11
    Description: Author(s): L. Yang, C. J. Lin, H. M. Jia, X. X. Xu, F. Yang, H. Q. Zhang, Z. H. Liu, P. F. Bao, and L. J. Sun Angular distributions of 7 Li+ 11 B elastic scattering were measured at E lab ( 7 Li)=9.85, 13.3, 18.3, 23.3, and 28.3 MeV within the angular range of θ c.m. ≈15 ∘ –80 ∘ . Optical model potentials have been extracted from these angular distributions and the data available in the literature at E lab ( 7 Li)=34 MeV an... [Phys. Rev. C 87, 047601] Published Wed Apr 10, 2013
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-02
    Description: Author(s): D. D. S. Coupland, M. Youngs, Z. Chajecki, W. G. Lynch, M. B. Tsang, Y. X. Zhang, M. A. Famiano, T. K. Ghosh, B. Giacherio, M. A. Kilburn, Jenny Lee, H. Liu, F. Lu, P. Morfouace, P. Russotto, A. Sanetullaev, R. H. Showalter, G. Verde, and J. Winkelbauer It has been generally accepted that momentum-dependent potentials for neutrons and protons at energies well away from the Fermi surface cause both to behave as if their inertial masses are effectively 70% of the vacuum values. This similarity in effective masses may no longer hold in dense neutron-r… [Phys. Rev. C 94, 011601(R)] Published Fri Jul 01, 2016
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-23
    Description: Author(s): H. M. Jia, C. J. Lin, F. Yang, X. X. Xu, H. Q. Zhang, Z. H. Liu, L. Yang, S. T. Zhang, P. F. Bao, and L. J. Sun Fusion excitation functions with high precision have been measured for the 16 O+ 76 Ge and 18 O+ 74 Ge systems at energies near and below the Coulomb barrier. The barrier distributions have been extracted from the corresponding excitation functions. The coupling effect of the positive Q -value neutron tran... [Phys. Rev. C 86, 044621] Published Mon Oct 22, 2012
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-25
    Description: Author(s): Y. G. Ma (马余刚), G. H. Liu (刘桂华), X. Z. Cai (蔡翔舟), D. Q. Fang (方德清), W. Guo (郭威), W. Q. Shen (沈文庆), W. D. Tian (田文栋), and H. W. Wang (王宏伟) Hard photons emitted from energetic heavy-ion collisions are very interesting since they do not experience nuclear interaction, and therefore they are useful to explore properties of nuclear matter. We investigated hard-photon production and its properties in intermediate-energy heavy-ion collisions... [Phys. Rev. C 85, 024618] Published Fri Feb 24, 2012
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-29
    Description: Author(s): L. Yang, C. J. Lin, H. M. Jia, F. Yang, Z. D. Wu, X. X. Xu, H. Q. Zhang, Z. H. Liu, P. F. Bao, L. J. Sun, and N. R. Ma Angular distributions of the Pb208(Li7,He6)Bi209 reactions with one-proton transferred to the ground, first-excited, and second-excited states of Bi209 were measured at Elab=25.67, 28.55, 32.55, 37.55, and 42.55 MeV. The experimental data and the data available in the literature at Elab=52 MeV were ... [Phys. Rev. C 89, 044615] Published Mon Apr 28, 2014
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-04
    Description: Author(s): H. M. Jia, C. J. Lin, F. Yang, X. X. Xu, H. Q. Zhang, Z. H. Liu, Z. D. Wu, L. Yang, N. R. Ma, P. F. Bao, and L. J. Sun Background: The hexadecapole deformation β4 is usually difficult to determine experimentally, especially its sign. The rapidly accumulated knowledge of β2 inspires the desire of β4 for radioactive nuclei, but the current low-quality beam is a severe experimental challenge. Therefore, a simple but se... [Phys. Rev. C 90, 031601] Published Wed Sep 03, 2014
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-03-31
    Description: In response to adenosine 5'-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7 A resolution, and with a non-nucleotide antagonist BPTU at 2.2 A resolution. The structures reveal two distinct ligand-binding sites, providing atomic details of P2Y1R's unique ligand-binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which is different in shape and location from the nucleotide binding site in the previously determined structure of P2Y12R, representative of another P2YR subfamily. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G-protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Dandan -- Gao, Zhan-Guo -- Zhang, Kaihua -- Kiselev, Evgeny -- Crane, Steven -- Wang, Jiang -- Paoletta, Silvia -- Yi, Cuiying -- Ma, Limin -- Zhang, Wenru -- Han, Gye Won -- Liu, Hong -- Cherezov, Vadim -- Katritch, Vsevolod -- Jiang, Hualiang -- Stevens, Raymond C -- Jacobson, Kenneth A -- Zhao, Qiang -- Wu, Beili -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54GM094618/GM/NIGMS NIH HHS/ -- Z01 DK031116-21/Intramural NIH HHS/ -- Z01DK031116-26/DK/NIDDK NIH HHS/ -- ZIA DK031116-26/Intramural NIH HHS/ -- England -- Nature. 2015 Apr 16;520(7547):317-21. doi: 10.1038/nature14287. Epub 2015 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA. ; Bridge Institute, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA. ; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; 1] Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA [2] Bridge Institute, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA [3] iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25822790" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/analogs & derivatives/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/*chemistry/*metabolism/pharmacology ; Humans ; Ligands ; Models, Molecular ; Molecular Conformation ; Purinergic P2Y Receptor Antagonists/*chemistry/metabolism/pharmacology ; Receptors, Purinergic P2Y1/*chemistry/*metabolism ; Thionucleotides/chemistry/metabolism ; Uracil/*analogs & derivatives/chemistry/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-11-01
    Description: We describe a new molecular class of genetic-pairing system that has a native DNA backbone but has all four base pairs replaced by new, larger pairs. The base pairs include size-expanded analogs of thymine and of adenine, both extended by the width of a benzene ring (2.4 A). The expanded-diameter double helices are more thermodynamically stable than the Watson-Crick helix, likely because of enhanced base stacking. Structural data confirm a right-handed, double-stranded, and base-paired helical form. Because of the larger base size, all the pairs of this helical system are fluorescent, which suggests practical applications in detection of natural DNA and RNA. Our findings establish that there is no apparent structural or thermodynamic prohibition against genetic systems having sizes different from the natural one.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Haibo -- Gao, Jianmin -- Lynch, Stephen R -- Saito, Y David -- Maynard, Lystranne -- Kool, Eric T -- GM52956/GM/NIGMS NIH HHS/ -- GM63587/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):868-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593180" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*analogs & derivatives/chemistry ; *Base Pairing ; Base Sequence ; Benzene/chemistry ; Circular Dichroism ; Hydrogen Bonding ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; *Nucleic Acid Conformation ; Nucleic Acid Denaturation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides/*chemistry ; Temperature ; Thermodynamics ; Thymine/*analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-10
    Description: The human immunodeficiency virus (HIV)-1 protein Vif has a central role in the neutralization of host innate defences by hijacking cellular proteasomal degradation pathways to subvert the antiviral activity of host restriction factors; however, the underlying mechanism by which Vif achieves this remains unclear. Here we report a crystal structure of the Vif-CBF-beta-CUL5-ELOB-ELOC complex. The structure reveals that Vif, by means of two domains, organizes formation of the pentameric complex by interacting with CBF-beta, CUL5 and ELOC. The larger domain (alpha/beta domain) of Vif binds to the same side of CBF-beta as RUNX1, indicating that Vif and RUNX1 are exclusive for CBF-beta binding. Interactions of the smaller domain (alpha-domain) of Vif with ELOC and CUL5 are cooperative and mimic those of SOCS2 with the latter two proteins. A unique zinc-finger motif of Vif, which is located between the two Vif domains, makes no contacts with the other proteins but stabilizes the conformation of the alpha-domain, which may be important for Vif-CUL5 interaction. Together, our data reveal the structural basis for Vif hijacking of the CBF-beta and CUL5 E3 ligase complex, laying a foundation for rational design of novel anti-HIV drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Yingying -- Dong, Liyong -- Qiu, Xiaolin -- Wang, Yishu -- Zhang, Bailing -- Liu, Hongnan -- Yu, You -- Zang, Yi -- Yang, Maojun -- Huang, Zhiwei -- England -- Nature. 2014 Jan 9;505(7482):229-33. doi: 10.1038/nature12884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China [2]. ; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China. ; MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402281" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Core Binding Factor Alpha 2 Subunit/metabolism ; Core Binding Factor beta Subunit/*chemistry/*metabolism ; Crystallography, X-Ray ; Cullin Proteins/*chemistry/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/metabolism ; Protein Binding ; Protein Stability ; Protein Structure, Tertiary ; Suppressor of Cytokine Signaling Proteins ; Transcription Factors/chemistry/metabolism ; vif Gene Products, Human Immunodeficiency Virus/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...