ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 34 (1993), S. 1351-1356 
    ISSN: 0031-9422
    Keywords: G. soja ; Glycine max ; Leguminosae ; chemical structure. ; gene expression ; inheritance ; sugar chain composition ; triterpenoids
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 31 (1992), S. 4139-4142 
    ISSN: 0031-9422
    Keywords: Glycine max ; Glycine soja ; Leguminosae ; deficiency ; mutant ; protein ; saponin ; soybean ; triterpenoid ; β-conglycinin.
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0031-9422
    Keywords: Glycine max ; Leguminosae ; accelerated aging ; chemiluminescence ; lipoxygenase ; mutant seeds ; phospholipids. ; senescence ; soybean
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 19 (1980), S. 1841-1843 
    ISSN: 0031-9422
    Keywords: Glycine max ; Leguminosae ; glycinin ; polymorphism. ; soybean ; subunit
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5028
    Keywords: gene expression ; Glycine max ; protein-DNA interaction ; seed storage protein gene ; transcriptional regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A 2.2 kb fragment containing the 5′-flanking region of the soybean glycinin A2B1a gene and its successive deletions with a shorter 5′-flanking sequence were fused, in frame, to the β-glucuronidase (GUS) reporter gene. The resultant fusions were introduced into tobacco plants via Agrobacterium tumefaciens. Assays of the GUS activity in seeds of transgenic tobacco showed that the upstream region, −657 to −327 (relative to the transcription initiation site [+1]), of the glycinin gene is required for optimal expression of the transformed gene. Interactions between embryo nuclear factors and DNA fragments covering the downstream region of −326, in which are included the TATA box and legumin boxes, were not apparent. The embryo factors capable of binding specifically to three subregions, −653 to −527, −526 to −422, and −427 to −321, of the upstream regulatory region were detected. Such factors appeared to be organ-specific and could be found solely in developing seeds at the early middle stage of embryogenesis (around 24 days after flowering). Evidence obtained by characterizing the nature of the binding proteins and by gel mobility shift assays established that the same factor does interact with a consensus motif 5′-ATA/TATTTCN-/CTA-3′ which occurs four times in the cis-acting regulatory region between −657 and −327. Moreover, this conserved motif could also be found in the 5′ regulatory region of another glycinin A1aB1b gene. Thus it is likely that the observed interaction between the nuclear factor and the conserved motifs would lead to activation of transcription from the glycinin genes in maturing soybean seeds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1617-4623
    Keywords: Glycine max ; Seed storage protein ; Gene regulation ; Protein binding sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The soybean embryo factor binding sequence in the glycinin A2B1a gene promoter was delimited to an A/T-rich 9 bp sequence, 5′-TAATAATTT-3′, designated as the glycinin box, by DNA footprinting and gel mobility shift assay using synthetic oligonucleotides. It was shown that the interaction with the factor takes place at a defined DNA sequence rather than at random A/T-rich sequence blocks in the glycinin 5′ flanking region. There are four glycinin boxes in the quantitative regulatory region between positions − 545 and − 378 of the glycinin A2B1a promoter. Multiple nonamer motifs similar to the glycinin box were also found in the equivalent regions of other glycinin and legumin promoters, suggesting that they must be conserved as a binding site for the embryo factor that activates the differential and stage-specific expression of seed 11S globulin genes in leguminous plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-03-27
    Description: Neurotrophins such as brain-derived neurotrophic factor (BDNF) are thought to be transferred from post- to presynaptic neurons and to be involved in the formation and plasticity of neural circuits. However, direct evidence for a transneuronal transfer of BDNF and its relation to neuronal activity remains elusive. We simultaneously injected complementary DNAs of green fluorescent protein (GFP)-tagged BDNF and red fluorescence protein into the nucleus of single neurons and visualized expression, localization, and transport of BDNF in living neurons. Fluorescent puncta representing BDNF moved in axons in the anterograde direction, though some moved retrogradely, and transferred to postsynaptic neurons in an activity-dependent manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kohara, K -- Kitamura, A -- Morishima, M -- Tsumoto, T -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2419-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neurophysiology, Biomedical Research Center, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264540" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Antibodies ; *Axonal Transport ; Axons/*metabolism ; Brain-Derived Neurotrophic Factor/genetics/*metabolism ; Cell Nucleus/metabolism ; Cells, Cultured ; DNA, Complementary ; Dendrites/metabolism ; Immunohistochemistry ; Luminescent Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Microscopy, Fluorescence ; Microtubule-Associated Proteins/analysis/immunology ; Neurites/metabolism ; Neuronal Plasticity ; Neurons/drug effects/*metabolism ; Plasmids ; Protein Transport ; Recombinant Fusion Proteins/metabolism ; Synapses/*metabolism ; Tetrodotoxin/pharmacology ; Visual Cortex/cytology ; tau Proteins/analysis/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-01-20
    Description: Axon guidance proteins are critical for the correct wiring of the nervous system during development. Several axon guidance cues and their family members have been well characterized. More unidentified axon guidance cues are assumed to participate in the formation of the extremely complex nervous system. We identified a secreted protein, draxin, that shares no homology with known guidance cues. Draxin inhibited or repelled neurite outgrowth from dorsal spinal cord and cortical explants in vitro. Ectopically expressed draxin inhibited growth or caused misrouting of chick spinal cord commissural axons in vivo. draxin knockout mice showed defasciculation of spinal cord commissural axons and absence of all forebrain commissures. Thus, draxin is a previously unknown chemorepulsive axon guidance molecule required for the development of spinal cord and forebrain commissures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Islam, Shahidul M -- Shinmyo, Yohei -- Okafuji, Tatsuya -- Su, Yuhong -- Naser, Iftekhar Bin -- Ahmed, Giasuddin -- Zhang, Sanbing -- Chen, Sandy -- Ohta, Kunimasa -- Kiyonari, Hiroshi -- Abe, Takaya -- Tanaka, Satomi -- Nishinakamura, Ryuichi -- Terashima, Toshio -- Kitamura, Toshio -- Tanaka, Hideaki -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):388-93. doi: 10.1126/science.1165187.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19150847" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/*physiology ; COS Cells ; Cercopithecus aethiops ; Chick Embryo ; Coculture Techniques ; Corpus Callosum/embryology/metabolism ; Electroporation ; Growth Cones/metabolism/physiology ; Intercellular Signaling Peptides and ; Proteins/chemistry/genetics/metabolism/*physiology ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Neurites/metabolism/*physiology ; Neurogenesis ; Neuroglia/metabolism ; Prosencephalon/abnormalities/*embryology/metabolism ; Recombinant Proteins/metabolism ; Spinal Cord/*embryology/metabolism ; Tissue Culture Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-01-24
    Description: Synaptic inputs on dendrites are nonlinearly converted to action potential outputs, yet the spatiotemporal patterns of dendritic activation remain to be elucidated at single-synapse resolution. In rodents, we optically imaged synaptic activities from hundreds of dendritic spines in hippocampal and neocortical pyramidal neurons ex vivo and in vivo. Adjacent spines were frequently synchronized in spontaneously active networks, thereby forming dendritic foci that received locally convergent inputs from presynaptic cell assemblies. This precise subcellular geometry manifested itself during N-methyl-D-aspartate receptor-dependent circuit remodeling. Thus, clustered synaptic plasticity is innately programmed to compartmentalize correlated inputs along dendrites and may reify nonlinear synaptic integration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, Naoya -- Kitamura, Kazuo -- Matsuo, Naoki -- Mayford, Mark -- Kano, Masanobu -- Matsuki, Norio -- Ikegaya, Yuji -- New York, N.Y. -- Science. 2012 Jan 20;335(6066):353-6. doi: 10.1126/science.1210362.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22267814" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; CA3 Region, Hippocampal/cytology/physiology ; Calcium/metabolism ; Dendritic Spines/*physiology/ultrastructure ; Excitatory Postsynaptic Potentials ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Net/*physiology ; Neuronal Plasticity ; Organ Culture Techniques ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology ; Rats ; Rats, Wistar ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/metabolism ; Somatosensory Cortex/cytology/physiology ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-25
    Description: Episodic memory requires associations of temporally discontiguous events. In the entorhinal-hippocampal network, temporal associations are driven by a direct pathway from layer III of the medial entorhinal cortex (MECIII) to the hippocampal CA1 region. However, the identification of neural circuits that regulate this association has remained unknown. In layer II of entorhinal cortex (ECII), we report clusters of excitatory neurons called island cells, which appear in a curvilinear matrix of bulblike structures, directly project to CA1, and activate interneurons that target the distal dendrites of CA1 pyramidal neurons. Island cells suppress the excitatory MECIII input through the feed-forward inhibition to control the strength and duration of temporal association in trace fear memory. Together, the two EC inputs compose a control circuit for temporal association memory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kitamura, Takashi -- Pignatelli, Michele -- Suh, Junghyup -- Kohara, Keigo -- Yoshiki, Atsushi -- Abe, Kuniya -- Tonegawa, Susumu -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):896-901. doi: 10.1126/science.1244634. Epub 2014 Jan 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24457215" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Association ; CA1 Region, Hippocampal/cytology/*physiology ; Entorhinal Cortex/cytology/*physiology ; GABAergic Neurons/physiology ; Interneurons/physiology ; Membrane Proteins/genetics ; *Memory, Episodic ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Net ; Neurons/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...