ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The 1992 global average total ozone, measured by the Total Ozone Mapping Spectrometer (TOMS) on the Nimbus-7 satellite, was 2 to 3 percent lower than any earlier year observed by TOMS (1979 to 1991). Ozone amounts were low in a wide range of latitudes in both the Northern and Southern Hemispheres, and the largest decreases were in the regions from 10 to 20 deg S and 10 to 60 deg N. Global ozone in 1992 is at least 1.5 percent lower than would be predicted by a statistical model that includes a linear trend and accounts for solar cycle variation and the quasi-biennial oscillation. These results are confirmed by comparisons with data from other ozone monitoring instruments: the SBUV/2 instrument on the NOAA-11 satellite, the TOMS instrument on the Russian Meteor-3 satellite, the World Standard Dobson Instrument 83, and a collection of 22 ground-based Dobson instruments.
    Keywords: GEOPHYSICS
    Type: Science (ISSN 0036-8075); 260; 5107; p. 523-526.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: GOME radiance, irradiance, and ozone products were validated by NASA Goddard Space Flight Center through three tasks which included, pre-launch calibration comparisons with SBUV and TOMS radiometric standards, validation of GOME Level-1 irradiance and radiance and Level 2 total ozone data products using SBUV/2 and TOMS algorithms and data, and studies of GOME data using the Goddard radiative transfer code. The prelaunch calibration using the NASA large aperture integrating sphere was checked against that provided by TPD. Agreement in the calibration constants, derived in air, between the Goddard and TPD system were better than 3%. Validation of Level-1 irradiance data included comparison of GOME and SSBUV and the UARS solar irradiances measurements. Large wavelength dependent differences, as high as 10%, were noted between GOME and the US instruments. This discrepancy has now been attributed to radiometric sensitivity changes experienced by GOME when operating in a vacuum. GOME Earth radiance data were then compared to the NOAA-14 SBUV/2 radiances. These results show that between 340 and 400 nm the differences in GOME and SBUV/2 data are less than 5% with some wavelength dependence. At wavelengths shorter than 300 nm, differences are of the order of 10% or more where the GOME radiances are larger. To test GOME DOAS retrieved total ozone values, these values were compared with ozone amounts retrieved using GOME radiances in the TOMS version-7 algorithm. The differences showed a solar zenith angle dependence ranging from 0 to 10% where the TOMS algorithm values were higher. GOME radiances below 300 nm were further validated by selecting radiances at wavelengths normally used by SBUV and processing them through the SBUV ozone profile algorithm and then compared to climatological values. The GOME ozone profiles ranged from 10-30% lower over altitude compared to climatological values. This is consistent with the offsets detected in the SBUV/2 radiance comparisons at wavelengths shorter than 300 nm.
    Keywords: Geophysics
    Type: US Participation in the GOME and SCIAMACHY Projects; 85-91; NASA-CR-202573
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The SBUV instrument, on Nimbus-7, measures the backscatter ultraviolet radiance at 12 wavelengths. The radiance data from these wavelengths was used to deduce the ozone profile and the total column ozone. In February 1987, there was an instrument malfunction. The purpose of this paper is to describe the malfunction, to determine the effect of the malfunction on the data quality, and if possible, to correct for the effects of the malfunction on the data from the SBUV instrument.
    Keywords: GEOPHYSICS
    Type: Ozone in the Troposphere and Stratosphere, Part 1; p 236-239
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Although the amount of data yielded by the initial airborne and surface tests was modest, it was sufficient to demonstrate that the full gravity gradient tensor was successfully measured from moving platforms both in the air and on the surface. The measurements were effectively continuous with spatial along-track resolution limited only by choice of integration lengths taken to reduce noise. The airborne data were less noisy (800 E squared/Hz typical) than were the Gravity Gradiometer Survey System (GGSS) measurements taken at the surface (5000 E squared/Hz typical). Single tracks of surface gravity disturbances recovered from airborne data were accurate to 3 to 4 mgal in each component of gravity when compared to 5 x 5 mean gravity anomalies over a 90 km track. Multitrack processing yielded 2 to 3 mgal when compared to 5 x 5 mean anomalies. Deflection of the vertical recovery over a distance of 150 km was about one arcsecond.
    Keywords: GEOPHYSICS
    Type: Ohio State Univ., Progress in the Determination of the Earth's Gravity Field; p 48-51
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-12
    Description: Pollution is often considered a localized phenomenon, but it is now clear that it travels from region-to-region, country to country, and even continent to continent. In addition to urban pollution in developed countries, large emissions from developing nations and large-scale biomass fires add to the global pollution burden. Ozone and aerosols are two components of pollution that contribute to radiative forcing of the earth s climate. In turn, as climate changes, rates of chemical and microphysical reactions may be perturbed. Considering the earth as a coupled chemical-microphysical-climate system poses challenges for models and observations alike. These issues were the topic of a Workshop held in May 2002 at NASA GSFC s Laboratory for Atmospheres. Highlights of the Workshop are summarized in this article.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: We describe the operational algorithm for the retrieval of stratospheric, tropospheric, and total column densities of nitrogen dioxide NO2 from earthshine radiances measured by the Ozone Monitoring Instrument (OMI), aboard the EOS-Aura satellite. The algorithm uses the DOAS method for the retrieval of slant column NO densities. Air mass factors (AMFs) calculated from a stratospheric NO2 profile are used to make initial estimates of the vertical column density. Using data collected over a 24-h period, a smooth estimate of the global stratospheric field is constructed. Where the initial vertical column densities exceed the estimated stratospheric field, we infer the presence of tropospheric NO2, and recalculate the vertical column density (VCD) using an AMF calculated from an assumed tropospheric NO2 profile. The parameters that control the operational algorithm were selected with the aid of a set of data assembled from stratospheric and tropospheric chemical transport models. We apply the optimized algorithm to OMI data and present global maps of NO2 VCDs for the first time.
    Keywords: Meteorology and Climatology
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); Volume 44; Issue 5; 1245
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: Reliable cloud pressure estimates are needed for accurate retrieval of ozone and other trace gases using satellite-borne backscatter ultraviolet (buv) instruments such as the global ozone monitoring experiment (GOME). Cloud pressure can be derived from buv instruments by utilizing the properties of rotational-Raman scattering (RRS) and absorption by O2-O2. In this paper we estimate cloud pressure from GOME observations in the 355-400 nm spectral range using the concept of a Lambertian-equivalent reflectivity (LER) surface. GOME has full spectral coverage in this range at relatively high spectral resolution with a very high signal-to-noise ratio. This allows for much more accurate estimates of cloud pressure than were possible with its predecessors SBUV and TOMS. We also demonstrate the potential capability to retrieve chlorophyll content with full-spectral buv instruments. We compare our retrieved LER cloud pressure with cloud top pressures derived from the infrared ATSR instrument on the same satellite. The findings confirm results from previous studies that showed retrieved LER cloud pressures from buv observations are systematically higher than IR-derived cloud-top pressure. Simulations using Mie-scattering radiative transfer algorithms that include O2-O2 absorption and RRS show that these differences can be explained by increased photon path length within and below cloud.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Smoke, Clouds, and Radiation-Brazil (SCAR-B) field project took place in the Brazilian Amazon and cerrado regions in August-September 1995 as a collaboration between Brazilian and American scientists. SCAR-B, a comprehensive experiment to study biomass burning, emphasized measurements of surface biomass, fires, smoke aerosol and trace gases, clouds, and radiation. their climatic effects, and remote sensing from aircraft and satellites. It included aircraft and ground-based in situ measurements of smoke emission factors and the compositions, sizes, and optical properties of the smoke particles; studies of the formation of ozone; the transport and evolution of smoke; and smoke interactions with water vapor and clouds. This overview paper introduces SCAR-B and summarizes some of the main results obtained so far. (1) Fires: measurements of the size distribution of fires, using the 50 m resolution MODIS Airborne Simulator, show that most of the fires are small (e.g. 0.005 square km), but the satellite sensors (e.g., AVHRR and MODIS with I km resolution) can detect fires in Brazil which are responsible for 60-85% of the burned biomass: (2) Aerosol: smoke particles emitted from fires increase their radius by as much as 60%, during their first three days in the atmosphere due to condensation and coagulation, reaching a mass median radius of 0.13-0.17 microns: (3) Radiative forcing: estimates of the globally averaged direct radiative forcing due to smoke worldwide, based on the properties of smoke measured in SCAR-B (-O.l to -0.3 W m(exp -2)), are smaller than previously modeled due to a lower single-scattering albedo (0.8 to 0.9), smaller scattering efficiency (3 square meters g(exp -2) at 550 nm), and low humidification factor; and (4) Effect on clouds: a good relationship was found between cloud condensation nuclei and smoke volume concentrations, thus an increase in the smoke emission is expected to affect cloud properties. In SCAR-B, new techniques were developed for deriving the absorption and refractive index of smoke from ground-based remote sensing. Future spaceborne radiometers (e.g., MODIS on the Earth Observing System), simulated on aircraft, proved to be very useful for monitoring smoke properties, surface properties, and the impacts of smoke on radiation and climate.
    Keywords: Meteorology and Climatology
    Type: Paper-98JD02281 , Journal of Geophysical Research (ISSN 0148-0227); 103; D24; 31,783-31,808
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: We present here case studies identifying upper-tropospheric NO2 produced in convective storms during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TC~i)n July and August 2007. DC8 aircraft missions, flown from the mission base in Costa Rica, recorded in situ NO2 profiles near active storms and in relatively quiet areas. We combine these data with measurements from the Ozone Monitoring Instrument (OMI) on the Aura satellite to estimate the amount of NO2 produced by lightning (LN02) above background levels in the regions influenced by storms. In our analysis, improved off-line processing techniques are employed to minimize known artifacts in the OM1 data. Information on lightning flashes (primarily CG) observed by the surface network operated by the Instituto Costarricense de Electricidad are examined upwind of regions where OM1 indicates enhanced LNO2. Comparisons of the observed flash data with measurements by the TRMM/LIS satellite instrument are used to obtain the lightning detection efficiency for total flashes. Finally, using the NO/NO2 ratio estimated from DC-8 observations, we estimate the average NO(x) production per lightning flash for each case in this study. The magnitudes of the measured NO(x) enhancements are compared with those observed by the DC-8 and with similar OM1 measurements analyzed in mid-latitude experiments.
    Keywords: Meteorology and Climatology
    Type: MSFC-2205 , 2009 American Meteorological Society Meeting; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: Instruments such as the Global Ozone Monitoring Experiment (GOME, on the European Remote Sensing Satellite (ERS-2), launched 1995), the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY, on ENVISAT, to be launched July 2001) and the Ozone Monitoring Instrument (OMI on EOS Aura, to be launched 2003) make measurements of the total column of NO2. There is interest in separating the stratospheric and tropospheric contributions to the column, as the tropospheric column provides a measure of pollution. We are using a 3D chemistry and transport model driven by winds from the Goddard Space Flight Center Data Assimilation System to examine variability in the stratospheric NO2 column. Model results for NOx = NO + NO2 + 2N2O5 will be shown to compare well with sunset observations from the Halogen Occultation Experiment on the Upper Atmosphere Research Satellite, and to exhibit similar temporal and spatial dependence. Partitioning between NO, NO2, and N2O5 is also shown to compare well with observations. This good agreement supports the use of simulated fields in the stratosphere to derive the tropospheric column from the total column. Preliminary comparisons of the tropospheric column with model simulations for the troposphere will also be shown.
    Keywords: Geophysics
    Type: 8th International Association of Meteorology and Atmospheric Sciences Symposium; Jul 10, 2001 - Jul 18, 2001; Innsbruck; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...