ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (21)
  • Molecular Sequence Data  (16)
  • Cruciferae  (5)
  • Chemistry and Pharmacology  (21)
  • Mathematics
Collection
  • Articles  (21)
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 23 (1984), S. 1741-1743 
    ISSN: 0031-9422
    Keywords: 2-O-(p-coumaroyl)-l-malate ; 2-O-caffeoyl-l-malate ; 2-O-feruloyl-l-malate ; 2-O-sinapoyl-l-malate ; Cruciferae ; Raphanus sativus ; insect feeding behaviour. ; metabolism
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 21 (1982), S. 917-922 
    ISSN: 0031-9422
    Keywords: 2-hydroxybenzoylcholine ; 3-hydroxy-4-methoxybenzoylcholine ; 3-hydroxybenzoylcholine ; 4-hydroxy-3,5-dimethoxycinnamoyl-choline ; 4-hydroxy-3-methoxybenzoylcholine ; 4-hydroxybenzoylcholine ; Cruciferae ; Sinapis alba ; choline ester synthesis. ; choline esters ; phenols ; sinapine
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 37 (1994), S. 695-699 
    ISSN: 0031-9422
    Keywords: Brassica napus ; Cruciferae ; circadian ; flower fragrance ; leaf volatiles ; oilseed rape ; quantification. ; rhythmic emission
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 34 (1993), S. 539-544 
    ISSN: 0031-9422
    Keywords: Brassica oleracea ; Cruciferae ; acylated ; cabbage ; caffeoyl ; feruloyl ; flavonol glycosides ; p-coumaroyl ; sinapoyl.
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 23 (1984), S. 895-896 
    ISSN: 0031-9422
    Keywords: 4-hydroxybenzylamine ; 4-hydroxybenzylglucosinolate ; Cruciferae ; N^5-(4-hydroxybenzyl) glutamine ; S. arvensis ; Sinapis alba ; amine metabolism ; chemotaxonomy. ; glucosinolate catabolism ; sinalbin ; γ-glutamyl-4-hydroxybenzylamine
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-07-10
    Description: The tumor necrosis factor (TNF) superfamily of cytokines includes both soluble and membrane-bound proteins that regulate immune responses. A member of the human TNF family, BLyS (B lymphocyte stimulator), was identified that induced B cell proliferation and immunoglobulin secretion. BLyS expression on human monocytes could be up-regulated by interferon-gamma. Soluble BLyS functioned as a potent B cell growth factor in costimulation assays. Administration of soluble recombinant BLyS to mice disrupted splenic B and T cell zones and resulted in elevated serum immunoglobulin concentrations. The B cell tropism of BLyS is consistent with its receptor expression on B-lineage cells. The biological profile of BLyS suggests it is involved in monocyte-driven B cell activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, P A -- Belvedere, O -- Orr, A -- Pieri, K -- LaFleur, D W -- Feng, P -- Soppet, D -- Charters, M -- Gentz, R -- Parmelee, D -- Li, Y -- Galperina, O -- Giri, J -- Roschke, V -- Nardelli, B -- Carrell, J -- Sosnovtseva, S -- Greenfield, W -- Ruben, S M -- Olsen, H S -- Fikes, J -- Hilbert, D M -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):260-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Sciences, 9410 Key West Avenue, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398604" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Cell Activating Factor ; B-Cell Activation Factor Receptor ; B-Lymphocyte Subsets/immunology ; B-Lymphocytes/*immunology ; Cell Line ; Cells, Cultured ; Humans ; Immunoglobulins/blood ; Interferon-gamma/pharmacology ; *Lymphocyte Activation ; Membrane Proteins/chemistry/genetics/pharmacology/*physiology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Monocytes/*immunology ; Receptors, Cytokine/metabolism ; Receptors, Tumor Necrosis Factor/metabolism ; Recombinant Proteins/pharmacology ; Sequence Alignment ; Species Specificity ; Tumor Necrosis Factor-alpha/chemistry/genetics/pharmacology/*physiology ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-02-19
    Description: E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 A, respectively. These structures show that side chain contacts to ATP.Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsen, Shaun K -- Capili, Allan D -- Lu, Xuequan -- Tan, Derek S -- Lima, Christopher D -- F32 GM075695/GM/NIGMS NIH HHS/ -- F32 GM075695-03/GM/NIGMS NIH HHS/ -- R01 AI068038/AI/NIAID NIH HHS/ -- R01 AI068038-02/AI/NIAID NIH HHS/ -- R01 AI068038-03/AI/NIAID NIH HHS/ -- R01 GM065872/GM/NIGMS NIH HHS/ -- R01 GM065872-09/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):906-12. doi: 10.1038/nature08765.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology, Sloan-Kettering Institute, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164921" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; *Biocatalysis ; Catalytic Domain/*physiology ; Conserved Sequence ; Crystallography, X-Ray ; Cysteine/chemistry/metabolism ; Humans ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; SUMO-1 Protein/*chemistry/*metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Sulfides/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Activating Enzymes/*chemistry/*metabolism ; Ubiquitins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1990-02-16
    Description: A region in the human immunodeficiency virus (HIV) env message, with the potential to form a complex secondary structure (designated RRE), interacts with the rev protein (Rev). This interaction is believed to mediate export of HIV structural messenger RNAs from the nucleus to the cytoplasm. In this report the regions essential for Rev interaction with the RRE are further characterized and the functional significance of Rev-RRE interaction in vivo is examined. A single hairpin loop structure within the RRE was found to be a primary determinant for Rev binding in vitro and Rev response in vivo. Maintenance of secondary structure, rather than primary nucleotide sequence alone, appeared to be necessary for Rev-RNA interaction, which distinguishes it from the mechanism for cis-acting elements in DNA. Limited changes within the 200 nucleotides, which preserved the proper RRE conformational structure, were well tolerated for Rev binding and function. Thus, variation among the RRE elements present in the diverse HIV isolates would have little, if any, effect on Rev responsiveness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsen, H S -- Nelbock, P -- Cochrane, A W -- Rosen, C A -- New York, N.Y. -- Science. 1990 Feb 16;247(4944):845-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2406903" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Chromosome Deletion ; Gene Products, rev/genetics/*metabolism ; Genes, rev ; HIV/*genetics/metabolism ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Plasmids ; Protein Conformation ; RNA, Messenger/*genetics/metabolism ; RNA, Viral/genetics/metabolism ; Trans-Activators/*metabolism ; rev Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-07-19
    Description: The incorporation of 2'-fluoro- and 2'-aminonucleotides into a hammerhead ribozyme was accomplished by automated chemical synthesis. The presence of 2'-fluorouridines, 2'-fluorocytidines, or 2'-aminouridines did not appreciably decrease catalytic efficiency. Incorporation of 2'-aminocytidines decreased ribozyme activity approximately by a factor of 20. The replacement of all adenosines with 2'-fluoroadenosines abolished catalysis in the presence of MgCl2 within the limits of detection, but some activity was retained in the presence of MnCl2. This effect on catalysis was localized to a specific group of adenines within the conserved single-stranded region of the ribozyme. The decrease in catalytic efficiency was caused by a decrease in the rate constant; the Michaelis constant was unaltered. The 2'-fluoro and 2'-amino modifications conferred resistance toward ribonuclease degradation. Ribozymes containing 2'-fluoro- or 2'-aminonucleotides at all uridine and cytidine positions were stabilized against degradation in rabbit serum by a factor of at least 10(3) compared to unmodified ribozyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pieken, W A -- Olsen, D B -- Benseler, F -- Aurup, H -- Eckstein, F -- New York, N.Y. -- Science. 1991 Jul 19;253(5017):314-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Experimentelle Medizin, Abteilung Chemie, Gottingen, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1857967" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Chlorides ; Kinetics ; Magnesium Chloride/pharmacology ; Manganese/pharmacology ; *Manganese Compounds ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Catalytic/chemical synthesis/*metabolism ; Ribonucleases/*metabolism ; Ribonucleotides ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-07-29
    Description: Comparative genomics of 45 epidemiologically varied variola virus isolates from the past 30 years of the smallpox era indicate low sequence diversity, suggesting that there is probably little difference in the isolates' functional gene content. Phylogenetic clustering inferred three clades coincident with their geographical origin and case-fatality rate; the latter implicated putative proteins that mediate viral virulence differences. Analysis of the viral linear DNA genome suggests that its evolution involved direct descent and DNA end-region recombination events. Knowing the sequences will help understand the viral proteome and improve diagnostic test precision, therapeutics, and systems for their assessment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Esposito, Joseph J -- Sammons, Scott A -- Frace, A Michael -- Osborne, John D -- Olsen-Rasmussen, Melissa -- Zhang, Ming -- Govil, Dhwani -- Damon, Inger K -- Kline, Richard -- Laker, Miriam -- Li, Yu -- Smith, Geoffrey L -- Meyer, Hermann -- Leduc, James W -- Wohlhueter, Robert M -- G0501257/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):807-12. Epub 2006 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Preparedness, Detection, and Control of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA. jesposito@cdc.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16873609" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Viral/*genetics ; Disease Outbreaks ; *Evolution, Molecular ; Gene Deletion ; *Genetic Variation ; *Genome, Viral ; Genomics ; Humans ; Molecular Sequence Data ; Open Reading Frames ; Phylogeny ; Proteome/analysis/genetics ; Recombination, Genetic ; Sequence Analysis, DNA ; Smallpox/epidemiology/mortality/*virology ; Variola virus/classification/*genetics/isolation & purification/pathogenicity ; Viral Proteins/chemistry/genetics ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...