ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-11-02
    Description: We present an approach to fabricate solid capsules with precise control of size, permeability, mechanical strength, and compatibility. The capsules are fabricated by the self-assembly of colloidal particles onto the interface of emulsion droplets. After the particles are locked together to form elastic shells, the emulsion droplets are transferred to a fresh continuous-phase fluid that is the same as that inside the droplets. The resultant structures, which we call "colloidosomes," are hollow, elastic shells whose permeability and elasticity can be precisely controlled. The generality and robustness of these structures and their potential for cellular immunoisolation are demonstrated by the use of a variety of solvents, particles, and contents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dinsmore, A D -- Hsu, Ming F -- Nikolaides, M G -- Marquez, Manuel -- Bausch, A R -- Weitz, D A -- New York, N.Y. -- Science. 2002 Nov 1;298(5595):1006-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and DEAS, Harvard University, Cambridge, MA 02138, USA. dinsmore@physics.umass.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12411700" target="_blank"〉PubMed〈/a〉
    Keywords: Adsorption ; *Capsules ; Cell Physiological Phenomena ; Cell Survival ; Cells, Cultured ; Chemistry, Physical ; *Colloids ; Diffusion ; Elasticity ; Emulsions ; Fibroblasts/physiology ; Microscopy, Confocal ; Microscopy, Electron, Scanning ; Permeability ; Physicochemical Phenomena ; Polylysine ; Polymethyl Methacrylate ; Surface Properties ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-05-29
    Description: Networks of cross-linked and bundled actin filaments are ubiquitous in the cellular cytoskeleton, but their elasticity remains poorly understood. We show that these networks exhibit exceptional elastic behavior that reflects the mechanical properties of individual filaments. There are two distinct regimes of elasticity, one reflecting bending of single filaments and a second reflecting stretching of entropic fluctuations of filament length. The mechanical stiffness can vary by several decades with small changes in cross-link concentration, and can increase markedly upon application of external stress. We parameterize the full range of behavior in a state diagram and elucidate its origin with a robust model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardel, M L -- Shin, J H -- MacKintosh, F C -- Mahadevan, L -- Matsudaira, P -- Weitz, D A -- GM52703/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 May 28;304(5675):1301-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15166374" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*chemistry/metabolism ; Actins/*chemistry/metabolism ; Biopolymers/chemistry/metabolism ; Elasticity ; Entropy ; Mathematics ; Microfilament Proteins/chemistry/metabolism ; Models, Biological ; Stress, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: Attractive colloidal particles can exhibit a fluid to solid phase transition if the magnitude of the attractive interaction is sufficiently large, if the volume fraction is sufficiently high, and if the applied stress is sufficiently small. The nature of this fluid to solid transition is similar for many different colloid systems, and for many different forms of interaction. The jamming phase transition captures the common features of these fluid to solid translations, by unifying the behavior as a function of the particle volume fraction, the energy of interparticle attractions, and the applied stress. This paper describes the applicability of the jamming state diagram, and highlights those regions where the fluid to solid transition is still poorly understood. It also presents new data for gelation of colloidal particles with an attractive depletion interaction, providing more insight into the origin of the fluid to solid transition.
    Keywords: Atomic and Molecular Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...