ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-04-24
    Description: T cell receptor (TCR) signaling requires activation of Zap-70 and Src family tyrosine kinases, but requirements for other tyrosine kinases are less clear. Combined deletion in mice of two Tec kinases, Rlk and Itk, caused marked defects in TCR responses including proliferation, cytokine production, and apoptosis in vitro and adaptive immune responses to Toxoplasma gondii in vivo. Molecular events immediately downstream from the TCR were intact in rlk-/-itk-/- cells, but intermediate events including inositol trisphosphate production, calcium mobilization, and mitogen-activated protein kinase activation were impaired, establishing Tec kinases as critical regulators of TCR signaling required for phospholipase C-gamma activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schaeffer, E M -- Debnath, J -- Yap, G -- McVicar, D -- Liao, X C -- Littman, D R -- Sher, A -- Varmus, H E -- Lenardo, M J -- Schwartzberg, P L -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):638-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Human Genome Research Institute, National Cancer Institute, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213685" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; CD4-CD8 Ratio ; Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Diglycerides/metabolism ; Gene Targeting ; Inositol Phosphates/metabolism ; Interferon-gamma/biosynthesis ; Interleukin-2/biosynthesis/pharmacology ; Isoenzymes/metabolism ; Killer Cells, Natural/immunology ; Lymphocyte Activation ; Mice ; Mutation ; Phospholipase C gamma ; Phosphorylation ; Protein-Tyrosine Kinases/genetics/*metabolism ; Receptors, Antigen, T-Cell/*metabolism ; *Signal Transduction ; T-Lymphocytes/*enzymology/*immunology ; Toxoplasmosis, Animal/immunology ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-07-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwartzberg, P L -- New York, N.Y. -- Science. 2001 Jul 13;293(5528):228-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA. pams@nhgri.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11452106" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; Apoptosis ; Autoimmune Diseases/enzymology/*immunology ; Cell Division ; Immune System/*physiology ; *Intercellular Signaling Peptides and Proteins ; Ligands ; Lymphocyte Activation ; Lymphocytes/immunology ; Mice ; Neural Cell Adhesion Molecules/deficiency/metabolism ; Oncogene Proteins/deficiency/metabolism ; Protein S/metabolism ; Proteins/metabolism ; *Proto-Oncogene Proteins ; Receptor Protein-Tyrosine Kinases/deficiency/*immunology/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-11-26
    Description: The cytokine interleukin-21 (IL-21) is closely related to IL-2 and IL-15, and their receptors all share the common cytokine receptor gamma chain, gammac, which is mutated in humans with X-linked severe combined immunodeficiency disease (XSCID). We demonstrate that, although mice deficient in the receptor for IL-21 (IL-21R) have normal lymphoid development, after immunization, these animals have higher production of the immunoglobulin IgE, but lower IgG1, than wild-type animals. Mice lacking both IL-4 and IL-21R exhibited a significantly more pronounced phenotype, with dysgammaglobulinemia, characterized primarily by a severely impaired IgG response. Thus, IL-21 has a significant influence on the regulation of B cell function in vivo and cooperates with IL-4. This suggests that these gammac-dependent cytokines may be those whose inactivation is primarily responsible for the B cell defect in humans with XSCID.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ozaki, Katsutoshi -- Spolski, Rosanne -- Feng, Carl G -- Qi, Chen-Feng -- Cheng, Jun -- Sher, Alan -- Morse, Herbert C 3rd -- Liu, Chengyu -- Schwartzberg, Pamela L -- Leonard, Warren J -- New York, N.Y. -- Science. 2002 Nov 22;298(5598):1630-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12446913" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody-Producing Cells/immunology ; B-Lymphocytes/*immunology ; CD4-Positive T-Lymphocytes/immunology ; Cells, Cultured ; Gene Targeting ; Genetic Diseases, X-Linked/immunology ; Humans ; Immunization ; Immunoglobulin E/*biosynthesis ; Immunoglobulin G/*biosynthesis ; Immunoglobulins/biosynthesis ; Immunologic Memory ; Interferon-gamma/biosynthesis ; Interleukin-21 Receptor alpha Subunit ; Interleukin-4/biosynthesis/physiology ; Interleukins/*physiology ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Receptors, Interleukin/genetics/metabolism ; Receptors, Interleukin-21 ; Severe Combined Immunodeficiency/immunology ; Signal Transduction ; T-Lymphocytes/immunology ; Toxoplasmosis, Animal/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-10-10
    Description: Generation of long-term antibody-mediated immunity depends on the germinal centre reaction, which requires cooperation between antigen-specific T and B lymphocytes. In human X-linked lymphoproliferative disease and its gene-targeted mouse model, loss-of-function mutations in signalling lymphocyte activation molecule-associated protein (SAP, encoded by SH2D1a) cause a profound defect in germinal centre formation by an as yet unknown mechanism. Here, using two-photon intravital imaging, we show that SAP deficiency selectively impairs the ability of CD4(+) T cells to stably interact with cognate B cells but not antigen-presenting dendritic cells. This selective defect results in a failure of antigen-specific B cells to receive adequate levels of contact-dependent T-cell help to expand normally, despite Sap(-/-) T cells exhibiting the known characteristics of otherwise competent helper T cells. Furthermore, the lack of stable interactions with B cells renders Sap(-/-) T cells unable to be efficiently recruited to and retained in a nascent germinal centre to sustain the germinal centre reaction. These results offer an explanation for the germinal centre defect due to SAP deficiency and provide new insights into the bi-directional communication between cognate T and B cells in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652134/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652134/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qi, Hai -- Cannons, Jennifer L -- Klauschen, Frederick -- Schwartzberg, Pamela L -- Germain, Ronald N -- Z01 AI000545-19/Intramural NIH HHS/ -- England -- Nature. 2008 Oct 9;455(7214):764-9. doi: 10.1038/nature07345.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18843362" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*cytology/*immunology ; CD4-Positive T-Lymphocytes/*cytology/*immunology ; Cell Adhesion ; Cell Communication ; Cells, Cultured ; Chimera/immunology ; Dendritic Cells/immunology ; Germinal Center/*cytology/*immunology ; Intracellular Signaling Peptides and Proteins/deficiency/genetics/*metabolism ; Lymphocyte Activation ; Mice
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1989-11-10
    Description: A substitution mutation has been introduced into the c-abl locus of murine embryonic stem cells by homologous recombination between exogenously added DNA and the endogenous gene, and these cells have been used to generate chimeric mice. It is shown that the c-abl mutation was transmitted to progeny by several male chimeras. This work demonstrates the feasibility of germ-line transmission of a mutation introduced into a nonselectable autosomal gene by homologous recombination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwartzberg, P L -- Goff, S P -- Robertson, E J -- P01 CA 23767/CA/NCI NIH HHS/ -- R01 HD 25208/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1989 Nov 10;246(4931):799-803.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians & Surgeons, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2554496" target="_blank"〉PubMed〈/a〉
    Keywords: Abelson murine leukemia virus/*genetics ; Animals ; Blotting, Southern ; Cell Line ; Chimera ; Cloning, Molecular ; *DNA, Recombinant ; Female ; Leukemia Virus, Murine/*genetics ; Male ; Mice ; Mice, Inbred C57BL ; *Mutation ; Oncogenes/*physiology ; Retroviridae Proteins, Oncogenic/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-01-22
    Description: Cell lineage specification depends on both gene activation and gene silencing, and in the differentiation of T helper progenitors to Th1 or Th2 effector cells, this requires the action of two opposing transcription factors, T-bet and GATA-3. T-bet is essential for the development of Th1 cells, and GATA-3 performs an equivalent role in Th2 development. We report that T-bet represses Th2 lineage commitment through tyrosine kinase-mediated interaction between the two transcription factors that interferes with the binding of GATA-3 to its target DNA. These results provide a novel function for tyrosine phosphorylation of a transcription factor in specifying alternate fates of a common progenitor cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, Eun Sook -- Szabo, Susanne J -- Schwartzberg, Pamela L -- Glimcher, Laurie H -- AI48126/AI/NIAID NIH HHS/ -- AI56296/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Jan 21;307(5708):430-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15662016" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Cytokines/pharmacology/physiology ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; GATA3 Transcription Factor ; Interleukin-5/genetics ; Mice ; Mice, Inbred BALB C ; Mutation ; Phosphorylation ; Phosphotyrosine/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/metabolism ; T-Box Domain Proteins ; T-Lymphocytes, Helper-Inducer/cytology/*physiology ; Th1 Cells/cytology/physiology ; Th2 Cells/cytology/*physiology ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...