ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-04-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Zhixiong -- Dullmann, Jochen -- Schiedlmeier, Bernd -- Schmidt, Manfred -- von Kalle, Christof -- Meyer, Johann -- Forster, Martin -- Stocking, Carol -- Wahlers, Anke -- Frank, Oliver -- Ostertag, Wolfram -- Kuhlcke, Klaus -- Eckert, Hans-Georg -- Fehse, Boris -- Baum, Christopher -- New York, N.Y. -- Science. 2002 Apr 19;296(5567):497.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heinrich-Pette-Institute, D-20251 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Cells/metabolism ; Bone Marrow Transplantation ; DNA-Binding Proteins/genetics/metabolism ; *Gene Transfer, Horizontal ; Genetic Therapy ; *Genetic Vectors ; Hematopoiesis, Extramedullary ; Leukemia, Monocytic, Acute/*etiology ; Mice ; Mice, Inbred C57BL ; Preleukemia/*etiology ; *Proto-Oncogenes ; Receptor, Nerve Growth Factor ; Receptor, trkA/genetics/metabolism ; Receptors, Nerve Growth Factor/*genetics/metabolism ; Retroviridae/*genetics ; Transcription Factors/genetics ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-08-01
    Description: After a long history of overexploitation, increasing efforts to restore marine ecosystems and rebuild fisheries are under way. Here, we analyze current trends from a fisheries and conservation perspective. In 5 of 10 well-studied ecosystems, the average exploitation rate has recently declined and is now at or below the rate predicted to achieve maximum sustainable yield for seven systems. Yet 63% of assessed fish stocks worldwide still require rebuilding, and even lower exploitation rates are needed to reverse the collapse of vulnerable species. Combined fisheries and conservation objectives can be achieved by merging diverse management actions, including catch restrictions, gear modification, and closed areas, depending on local context. Impacts of international fleets and the lack of alternatives to fishing complicate prospects for rebuilding fisheries in many poorer regions, highlighting the need for a global perspective on rebuilding marine resources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worm, Boris -- Hilborn, Ray -- Baum, Julia K -- Branch, Trevor A -- Collie, Jeremy S -- Costello, Christopher -- Fogarty, Michael J -- Fulton, Elizabeth A -- Hutchings, Jeffrey A -- Jennings, Simon -- Jensen, Olaf P -- Lotze, Heike K -- Mace, Pamela M -- McClanahan, Tim R -- Minto, Coilin -- Palumbi, Stephen R -- Parma, Ana M -- Ricard, Daniel -- Rosenberg, Andrew A -- Watson, Reg -- Zeller, Dirk -- New York, N.Y. -- Science. 2009 Jul 31;325(5940):578-85. doi: 10.1126/science.1173146.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Dalhousie University, Halifax, NS B3H 4J1, Canada. bworm@dal.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19644114" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Biomass ; *Conservation of Natural Resources ; *Ecosystem ; *Fisheries/methods ; *Fishes/anatomy & histology ; Internationality ; Marine Biology ; Models, Biological ; Oceans and Seas ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-20
    Description: Recovery of overexploited marine populations has been slow, and most remain below target biomass levels. A key question is whether this is due to insufficient reductions in harvest rates or the erosion of population resilience. Using a global meta-analysis of overfished stocks, we find that resilience of those stocks subjected to moderate levels of overfishing is enhanced, not compromised, offering the possibility of swift recovery. However, prolonged intense overexploitation, especially for collapsed stocks, not only delays rebuilding but also substantially increases the uncertainty in recovery times, despite predictable influences of fishing and life history. Timely and decisive reductions in harvest rates could mitigate this uncertainty. Instead, current harvest and low biomass levels render recovery improbable for the majority of the world's depleted stocks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neubauer, Philipp -- Jensen, Olaf P -- Hutchings, Jeffrey A -- Baum, Julia K -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):347-9. doi: 10.1126/science.1230441.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA. neubauer.phil@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23599493" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomass ; *Conservation of Natural Resources ; *Fisheries ; Fishes/*growth & development/physiology ; Population Density
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-05-21
    Description: Gene marking with replication-defective retroviral vectors has been used for more than 20 years to track the in vivo fate of cell clones. We demonstrate that retroviral integrations themselves may trigger nonmalignant clonal expansion in murine long-term hematopoiesis. All 29 insertions recovered from clones dominating in serially transplanted recipients affected loci with an established or potential role in the self-renewal or survival of hematopoietic stem cells. Transcriptional dysregulation occurred in all 12 insertion sites analyzed. These findings have major implications for diagnostic gene marking and the discovery of genes regulating stem cell turnover.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kustikova, Olga -- Fehse, Boris -- Modlich, Ute -- Yang, Min -- Dullmann, Jochen -- Kamino, Kenji -- von Neuhoff, Nils -- Schlegelberger, Brigitte -- Li, Zhixiong -- Baum, Christopher -- New York, N.Y. -- Science. 2005 May 20;308(5725):1171-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bone Marrow Transplantation, University Hospital Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15905401" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/genetics ; Bone Marrow Transplantation ; DNA-Binding Proteins/genetics ; Down-Regulation ; *Genetic Vectors ; *Hematopoiesis ; *Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*physiology ; Humans ; Ligase Chain Reaction ; Mice ; Mice, Inbred C57BL ; *Mutagenesis, Insertional ; Polymerase Chain Reaction ; Proto-Oncogenes/genetics ; Retroviridae/*genetics ; Transcription Factors/genetics ; Transcription, Genetic ; Transgenes ; Up-Regulation ; *Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-01-18
    Description: Overexploitation threatens the future of many large vertebrates. In the ocean, tunas and sea turtles are current conservation concerns because of this intense pressure. The status of most shark species, in contrast, remains uncertain. Using the largest data set in the Northwest Atlantic, we show rapid large declines in large coastal and oceanic shark populations. Scalloped hammerhead, white, and thresher sharks are each estimated to have declined by over 75% in the past 15 years. Closed-area models highlight priority areas for shark conservation, and the need to consider effort reallocation and site selection if marine reserves are to benefit multiple threatened species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baum, Julia K -- Myers, Ransom A -- Kehler, Daniel G -- Worm, Boris -- Harley, Shelton J -- Doherty, Penny A -- New York, N.Y. -- Science. 2003 Jan 17;299(5605):389-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1. baum@mscs.dal.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12532016" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlantic Ocean ; *Conservation of Natural Resources ; *Ecosystem ; Fishes ; Likelihood Functions ; Models, Statistical ; Population Density ; *Sharks
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-11-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baum, David A -- Smith, Stacey Dewitt -- Donovan, Samuel S S -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):979-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA. dbaum@wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284166" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Biology/*education ; Humans ; *Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-04-17
    Description: The development and maintenance of an epithelium requires finely balanced rates of growth and cell death. However, the mechanical and biochemical mechanisms that ensure proper feedback control of tissue growth, which when deregulated contribute to tumorigenesis, are poorly understood. Here we use the fly notum as a model system to identify a novel process of crowding-induced cell delamination that balances growth to ensure the development of well-ordered cell packing. In crowded regions of the tissue, a proportion of cells undergo a serial loss of cell-cell junctions and a progressive loss of apical area, before being squeezed out by their neighbours. This path of delamination is recapitulated by a simple computational model of epithelial mechanics, in which stochastic cell loss relieves overcrowding as the system tends towards equilibrium. We show that this process of delamination is mechanistically distinct from apoptosis-mediated cell extrusion and precedes the first signs of cell death. Overall, this analysis reveals a simple mechanism that buffers epithelia against variations in growth. Because live-cell delamination constitutes a mechanistic link between epithelial hyperplasia and cell invasion, this is likely to have important implications for our understanding of the early stages of cancer development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marinari, Eliana -- Mehonic, Aida -- Curran, Scott -- Gale, Jonathan -- Duke, Thomas -- Baum, Buzz -- 9786/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2012 Apr 15;484(7395):542-5. doi: 10.1038/nature10984.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22504180" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Communication ; Cell Count ; Cell Death ; Cell Growth Processes ; Cell Survival ; Drosophila melanogaster/*cytology ; Epithelial Cells/*cytology ; Female ; Male ; Models, Biological ; Neoplasms/pathology ; Stochastic Processes
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-14
    Description: Soybean (Glycine max (L.) Merr.) is an important crop that provides a sustainable source of protein and oil worldwide. Soybean cyst nematode (Heterodera glycines Ichinohe) is a microscopic roundworm that feeds on the roots of soybean and is a major constraint to soybean production. This nematode causes more than US$1 billion in yield losses annually in the United States alone, making it the most economically important pathogen on soybean. Although planting of resistant cultivars forms the core management strategy for this pathogen, nothing is known about the nature of resistance. Moreover, the increase in virulent populations of this parasite on most known resistance sources necessitates the development of novel approaches for control. Here we report the map-based cloning of a gene at the Rhg4 (for resistance to Heterodera glycines 4) locus, a major quantitative trait locus contributing to resistance to this pathogen. Mutation analysis, gene silencing and transgenic complementation confirm that the gene confers resistance. The gene encodes a serine hydroxymethyltransferase, an enzyme that is ubiquitous in nature and structurally conserved across kingdoms. The enzyme is responsible for interconversion of serine and glycine and is essential for cellular one-carbon metabolism. Alleles of Rhg4 conferring resistance or susceptibility differ by two genetic polymorphisms that alter a key regulatory property of the enzyme. Our discovery reveals an unprecedented plant resistance mechanism against a pathogen. The mechanistic knowledge of the resistance gene can be readily exploited to improve nematode resistance of soybean, an increasingly important global crop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Shiming -- Kandoth, Pramod K -- Warren, Samantha D -- Yeckel, Greg -- Heinz, Robert -- Alden, John -- Yang, Chunling -- Jamai, Aziz -- El-Mellouki, Tarik -- Juvale, Parijat S -- Hill, John -- Baum, Thomas J -- Cianzio, Silvia -- Whitham, Steven A -- Korkin, Dmitry -- Mitchum, Melissa G -- Meksem, Khalid -- England -- Nature. 2012 Dec 13;492(7428):256-60. doi: 10.1038/nature11651. Epub 2012 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, Illinois 62901, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235880" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; DNA Mutational Analysis ; Gene Order ; Gene Silencing ; Genetic Complementation Test ; Glycine Hydroxymethyltransferase/genetics/metabolism ; Haplotypes ; *Host-Parasite Interactions ; Models, Molecular ; Molecular Sequence Data ; Nematoda/*physiology ; Plant Proteins/chemistry/*genetics/*metabolism ; Polymorphism, Genetic/genetics ; Protein Structure, Tertiary ; Quantitative Trait Loci/genetics ; Soybeans/enzymology/*genetics/*parasitology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-03-31
    Description: Impacts of chronic overfishing are evident in population depletions worldwide, yet indirect ecosystem effects induced by predator removal from oceanic food webs remain unpredictable. As abundances of all 11 great sharks that consume other elasmobranchs (rays, skates, and small sharks) fell over the past 35 years, 12 of 14 of these prey species increased in coastal northwest Atlantic ecosystems. Effects of this community restructuring have cascaded downward from the cownose ray, whose enhanced predation on its bay scallop prey was sufficient to terminate a century-long scallop fishery. Analogous top-down effects may be a predictable consequence of eliminating entire functional groups of predators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myers, Ransom A -- Baum, Julia K -- Shepherd, Travis D -- Powers, Sean P -- Peterson, Charles H -- New York, N.Y. -- Science. 2007 Mar 30;315(5820):1846-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4J1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395829" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlantic Ocean ; Bivalvia ; Conservation of Natural Resources ; *Ecosystem ; *Elasmobranchii ; Fisheries ; *Food Chain ; Ostreidae ; Population Dynamics ; Population Growth ; Predatory Behavior ; *Sharks ; Skates (Fish)
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-01-28
    Description: Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sekar, Aswin -- Bialas, Allison R -- de Rivera, Heather -- Davis, Avery -- Hammond, Timothy R -- Kamitaki, Nolan -- Tooley, Katherine -- Presumey, Jessy -- Baum, Matthew -- Van Doren, Vanessa -- Genovese, Giulio -- Rose, Samuel A -- Handsaker, Robert E -- Schizophrenia Working Group of the Psychiatric Genomics Consortium -- Daly, Mark J -- Carroll, Michael C -- Stevens, Beth -- McCarroll, Steven A -- R01 HG006855/HG/NHGRI NIH HHS/ -- R01 MH077139/MH/NIMH NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- U01 MH105641/MH/NIMH NIH HHS/ -- England -- Nature. 2016 Feb 11;530(7589):177-83. doi: 10.1038/nature16549. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; MD-PhD Program, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814963" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Axons/metabolism ; Base Sequence ; Brain/metabolism/pathology ; Complement C4/chemistry/*genetics ; Complement Pathway, Classical ; Dendrites/metabolism ; Gene Dosage/genetics ; Gene Expression Regulation/genetics ; Genetic Predisposition to Disease/*genetics ; Genetic Variation/*genetics ; Haplotypes/genetics ; Humans ; Major Histocompatibility Complex/genetics ; Mice ; Models, Animal ; Neuronal Plasticity/genetics/physiology ; Polymorphism, Single Nucleotide/genetics ; RNA, Messenger/analysis/genetics ; Risk Factors ; Schizophrenia/*genetics/pathology ; Synapses/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...