ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (23)
  • Biochemistry and Biotechnology  (17)
Collection
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 11 (1990), S. 304-309 
    ISSN: 0173-0835
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: The principles and some applications of free flow zone electrophoresis and isotachophoresis are described. The influence of (i) carrier electrolyte conductivity on the migration velocity and (ii) band shape on zone electrophoresis was investigated. The technique was found convenient for studying the effect of pH on the mobility of proteins to create a mobility curve. The purification of alcohol dehydrogenase from a crude yeast extract revealed the separation power of zone electrophoresis for complex protein mixtures. Without additional steps, a purification factor of 5.4, with a recovery of 97 % alcohol dehydrogenase, was achieved. Free flow isotachophoresis was applied to the purification of immunoglobulins from human serum. Disadvantages of this technique are the time-consuming development of an optimized separation system and the empirical search for suitable spacers. Also, reaching of the steady state becomes increasingly difficult as the number of sample components increases.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 17 (1996), S. 418-422 
    ISSN: 0173-0835
    Keywords: Monoclonal antibodies ; Microheterogeneity ; Capillary electrophoresis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Based on complex formation of borate with carbohydrates in alkaline solutions, the oligosaccharide microheterogeneity of a monoclonal antibody was studied using capillary zone electrophoresis. In borate buffers characteristic separation patterns were found that could be attributed to the same antibody by their UV spectra, while in a phosphate buffer, under otherwise the same conditions, only a single peak was observed. N- and O-glycans were chemically hydrolyzed by trifluoromethane sulfonic acid, resulting in a completely deglycosylated protein; alternatively, N-glycans were enzymatically cleaved by incubation with peptide N-glycosidase F (PNGase F). In both approaches a changed antibody pattern was detected, indicating that the separation is due to carbohydrate microheterogeneity of the protein. Deglycosylation of the antibody by treatment with PNGase F was investigated by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). A shift to lower molecular masses of approximately 1500 Da for the enzymatically treated protein, compared with the intact glycoprotein, was found. The separation method was validated for linearity and reproducibility of migration time and peak area and optimized in terms of buffer pH, capillary temperature and borate concentration. This technique is sensitive to analyze batch-to-batch consistency in production and to test the stability of galenical formulations. After antibody storage in glass vials for 3 months at 37°C, the separation profile changed distinctly due to degradation at the carbohydrate or sialic acid moiety of the antibody, as indicated by MALDI-TOF-MS.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0173-0835
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Two modes of continuous isoelectric focusing are described. The development of a natural pH gradient, consisting of a mixture of three buffer solutions, and the focusing behavior of human serum albumin is investigated. The advantages of isoelectric focusing in an artificial pH gradient of three buffer solutions are demonstrated on the purification of α-amylase from an E. coli protein extract. Furthermore the principle of field step electrophoresis is presented. The most important factors influencing the efficiency: (i) residence time, (ii) conductivity of the sample and (iii) sample zone width, are discussed. The use of a larger sized device to allow simultaneous multiple injections of the sample demonstrates the feasibility of scaling-up field step electrophoresis. This approach permits a throughput of about 20 mL sample solution per minute.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-01-29
    Description: Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849629/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849629/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chandrashekar, Jayaram -- Kuhn, Christina -- Oka, Yuki -- Yarmolinsky, David A -- Hummler, Edith -- Ryba, Nicholas J P -- Zuker, Charles S -- R01 DC003160/DC/NIDCD NIH HHS/ -- R01 DC003160-05/DC/NIDCD NIH HHS/ -- Z01 DE000561-13/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Mar 11;464(7286):297-301. doi: 10.1038/nature08783. Epub 2010 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Neurobiology, University of California at San Diego, La Jolla, California 92093-0649, USA〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20107438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior/physiology ; Epithelial Sodium Channels/genetics/metabolism ; Mice ; Mice, Transgenic ; Sodium/*physiology ; Taste/*genetics ; Taste Buds/cytology/metabolism/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-12-03
    Description: Alphaviruses are enveloped RNA viruses that have a diameter of about 700 A and can be lethal human pathogens. Entry of virus into host cells by endocytosis is controlled by two envelope glycoproteins, E1 and E2. The E2-E1 heterodimers form 80 trimeric spikes on the icosahedral virus surface, 60 with quasi-three-fold symmetry and 20 coincident with the icosahedral three-fold axes arranged with T = 4 quasi-symmetry. The E1 glycoprotein has a hydrophobic fusion loop at one end and is responsible for membrane fusion. The E2 protein is responsible for receptor binding and protects the fusion loop at neutral pH. The lower pH in the endosome induces the virions to undergo an irreversible conformational change in which E2 and E1 dissociate and E1 forms homotrimers, triggering fusion of the viral membrane with the endosomal membrane and then releasing the viral genome into the cytoplasm. Here we report the structure of an alphavirus spike, crystallized at low pH, representing an intermediate in the fusion process and clarifying the maturation process. The trimer of E2-E1 in the crystal structure is similar to the spikes in the neutral pH virus except that the E2 middle region is disordered, exposing the fusion loop. The amino- and carboxy-terminal domains of E2 each form immunoglobulin-like folds, consistent with the receptor attachment properties of E2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057476/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057476/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Long -- Jose, Joyce -- Xiang, Ye -- Kuhn, Richard J -- Rossmann, Michael G -- P01 AI055672/AI/NIAID NIH HHS/ -- P01 AI055672-07/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):705-8. doi: 10.1038/nature09546.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907-2054, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124457" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Drosophila melanogaster ; Endosomes/metabolism ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Membrane Fusion ; Membrane Glycoproteins/chemistry/metabolism ; Models, Molecular ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Virus/metabolism ; Sindbis Virus/*chemistry/*metabolism ; Viral Envelope Proteins/*chemistry/*metabolism ; Viral Fusion Proteins/chemistry/metabolism ; Virion/chemistry/metabolism ; *Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1989-07-14
    Description: The role of a local angiotensin system in the vascular response to arterial injury was investigated by administering the angiotensin-converting enzyme (CE) inhibitor cilazapril to normotensive rats in which the left carotid artery was subjected to endothelial denudation and injury by balloon catheterization. In control animals, by 14 days after balloon injury, the processes of smooth muscle cell (SMC) proliferation, migration of SMCs from the media to the intima, and synthesis of extracellular matrix produced marked thickening of the intima, with reduction of the cross-sectional area of the lumen. However, in animals that received continuous treatment with the CE inhibitor, neointima formation was decreased (by about 80 percent), and lumen integrity was preserved. Thus, the angiotensin-converting enzyme may participate in modulating the proliferative response of the vascular wall after arterial injury, and inhibition of this enzyme may have therapeutic applications to prevent the proliferative lesions that occur after coronary angioplasty and vascular surgery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Powell, J S -- Clozel, J P -- Muller, R K -- Kuhn, H -- Hefti, F -- Hosang, M -- Baumgartner, H R -- New York, N.Y. -- Science. 1989 Jul 14;245(4914):186-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pharmaceutical Research Department, F. Hoffmann-La Roche Ltd., Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2526370" target="_blank"〉PubMed〈/a〉
    Keywords: Angiotensin-Converting Enzyme Inhibitors/*pharmacology ; Animals ; Blood Pressure/drug effects ; Catheterization ; Cell Division/drug effects ; Cilazapril ; Male ; Muscle, Smooth, Vascular/*drug effects/pathology ; Pyridazines/*pharmacology ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-11-01
    Description: Interleukin-4 (IL-4) promotes the growth and differentiation of many hematopoietic cells in vitro; in particular, it directs the immunoglobulin (Ig) class switch to IgG1 and IgE. Mice homozygous for a mutation that inactivates the IL-4 gene were generated to test the requirement for IL-4 in vivo. In the mutant mice T and B cell development was normal, but the serum levels of IgG1 and IgE were strongly reduced. The IgG1 dominance in a T cell-dependent immune response was lost, and IgE was not detectable upon nematode infection. Thus, some but not all of the in vitro properties of IL-4 are critical for the physiology of the immune system in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuhn, R -- Rajewsky, K -- Muller, W -- New York, N.Y. -- Science. 1991 Nov 1;254(5032):707-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genetics, University of Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948049" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Alleles ; Animals ; B-Lymphocytes/immunology ; Blotting, Southern ; Chromosome Deletion ; Concanavalin A ; DNA/genetics/isolation & purification ; Female ; Interleukin-4/deficiency/*genetics ; Lymph Nodes/growth & development/immunology ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Restriction Mapping ; Spleen/growth & development/immunology ; T-Lymphocytes/immunology ; Thymus Gland/growth & development/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1990-09-14
    Description: POU proteins have been shown to transcriptionally active cell-specific genes and to participate in the determination of cell fate. It is therefore thought that these proteins function in development through the stable activation of genes that define specific developmental pathways. Evidence is provided here for an alternative mode of action. The primary structure of SCIP, a POU protein expressed by developing Schwann cells of the peripheral nervous system, was deduced and SCIP activity was studied. Both in normal development and in response to nerve transection, SCIP expression was transiently activated only during the period of rapid cell division that separates the premyelinating and myelinating phases of Schwann cell differentiation. In cotransfection assays, SCIP acted as a transcriptional repressor of myelin-specific genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Monuki, E S -- Kuhn, R -- Weinmaster, G -- Trapp, B D -- Lemke, G -- NS 23896/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 14;249(4974):1300-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1975954" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Differentiation/genetics ; Cloning, Molecular ; Cyclic AMP/physiology ; Gene Expression Regulation ; Gene Library ; Genes, Homeobox/genetics/*physiology ; Molecular Sequence Data ; Myelin Sheath/metabolism ; Nerve Tissue Proteins/genetics/*physiology ; Octamer Transcription Factor-6 ; Rats ; Repressor Proteins/genetics/*physiology ; Schwann Cells/*cytology/metabolism ; Transcription Factors/genetics/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-04-14
    Description: The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rhesus Macaque Genome Sequencing and Analysis Consortium -- Gibbs, Richard A -- Rogers, Jeffrey -- Katze, Michael G -- Bumgarner, Roger -- Weinstock, George M -- Mardis, Elaine R -- Remington, Karin A -- Strausberg, Robert L -- Venter, J Craig -- Wilson, Richard K -- Batzer, Mark A -- Bustamante, Carlos D -- Eichler, Evan E -- Hahn, Matthew W -- Hardison, Ross C -- Makova, Kateryna D -- Miller, Webb -- Milosavljevic, Aleksandar -- Palermo, Robert E -- Siepel, Adam -- Sikela, James M -- Attaway, Tony -- Bell, Stephanie -- Bernard, Kelly E -- Buhay, Christian J -- Chandrabose, Mimi N -- Dao, Marvin -- Davis, Clay -- Delehaunty, Kimberly D -- Ding, Yan -- Dinh, Huyen H -- Dugan-Rocha, Shannon -- Fulton, Lucinda A -- Gabisi, Ramatu Ayiesha -- Garner, Toni T -- Godfrey, Jennifer -- Hawes, Alicia C -- Hernandez, Judith -- Hines, Sandra -- Holder, Michael -- Hume, Jennifer -- Jhangiani, Shalini N -- Joshi, Vandita -- Khan, Ziad Mohid -- Kirkness, Ewen F -- Cree, Andrew -- Fowler, R Gerald -- Lee, Sandra -- Lewis, Lora R -- Li, Zhangwan -- Liu, Yih-Shin -- Moore, Stephanie M -- Muzny, Donna -- Nazareth, Lynne V -- Ngo, Dinh Ngoc -- Okwuonu, Geoffrey O -- Pai, Grace -- Parker, David -- Paul, Heidie A -- Pfannkoch, Cynthia -- Pohl, Craig S -- Rogers, Yu-Hui -- Ruiz, San Juana -- Sabo, Aniko -- Santibanez, Jireh -- Schneider, Brian W -- Smith, Scott M -- Sodergren, Erica -- Svatek, Amanda F -- Utterback, Teresa R -- Vattathil, Selina -- Warren, Wesley -- White, Courtney Sherell -- Chinwalla, Asif T -- Feng, Yucheng -- Halpern, Aaron L -- Hillier, Ladeana W -- Huang, Xiaoqiu -- Minx, Pat -- Nelson, Joanne O -- Pepin, Kymberlie H -- Qin, Xiang -- Sutton, Granger G -- Venter, Eli -- Walenz, Brian P -- Wallis, John W -- Worley, Kim C -- Yang, Shiaw-Pyng -- Jones, Steven M -- Marra, Marco A -- Rocchi, Mariano -- Schein, Jacqueline E -- Baertsch, Robert -- Clarke, Laura -- Csuros, Miklos -- Glasscock, Jarret -- Harris, R Alan -- Havlak, Paul -- Jackson, Andrew R -- Jiang, Huaiyang -- Liu, Yue -- Messina, David N -- Shen, Yufeng -- Song, Henry Xing-Zhi -- Wylie, Todd -- Zhang, Lan -- Birney, Ewan -- Han, Kyudong -- Konkel, Miriam K -- Lee, Jungnam -- Smit, Arian F A -- Ullmer, Brygg -- Wang, Hui -- Xing, Jinchuan -- Burhans, Richard -- Cheng, Ze -- Karro, John E -- Ma, Jian -- Raney, Brian -- She, Xinwei -- Cox, Michael J -- Demuth, Jeffery P -- Dumas, Laura J -- Han, Sang-Gook -- Hopkins, Janet -- Karimpour-Fard, Anis -- Kim, Young H -- Pollack, Jonathan R -- Vinar, Tomas -- Addo-Quaye, Charles -- Degenhardt, Jeremiah -- Denby, Alexandra -- Hubisz, Melissa J -- Indap, Amit -- Kosiol, Carolin -- Lahn, Bruce T -- Lawson, Heather A -- Marklein, Alison -- Nielsen, Rasmus -- Vallender, Eric J -- Clark, Andrew G -- Ferguson, Betsy -- Hernandez, Ryan D -- Hirani, Kashif -- Kehrer-Sawatzki, Hildegard -- Kolb, Jessica -- Patil, Shobha -- Pu, Ling-Ling -- Ren, Yanru -- Smith, David Glenn -- Wheeler, David A -- Schenck, Ian -- Ball, Edward V -- Chen, Rui -- Cooper, David N -- Giardine, Belinda -- Hsu, Fan -- Kent, W James -- Lesk, Arthur -- Nelson, David L -- O'brien, William E -- Prufer, Kay -- Stenson, Peter D -- Wallace, James C -- Ke, Hui -- Liu, Xiao-Ming -- Wang, Peng -- Xiang, Andy Peng -- Yang, Fan -- Barber, Galt P -- Haussler, David -- Karolchik, Donna -- Kern, Andy D -- Kuhn, Robert M -- Smith, Kayla E -- Zwieg, Ann S -- 062023/Wellcome Trust/United Kingdom -- R01 HG002939/HG/NHGRI NIH HHS/ -- U54 HG003068/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):222-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA. agibbs@bcm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431167" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomedical Research ; *Evolution, Molecular ; Female ; Gene Duplication ; Gene Rearrangement ; Genetic Diseases, Inborn ; Genetic Variation ; *Genome ; Humans ; Macaca mulatta/*genetics ; Male ; Multigene Family ; Mutation ; Pan troglodytes/genetics ; Sequence Analysis, DNA ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-10-12
    Description: Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein-coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein-coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Beili -- Chien, Ellen Y T -- Mol, Clifford D -- Fenalti, Gustavo -- Liu, Wei -- Katritch, Vsevolod -- Abagyan, Ruben -- Brooun, Alexei -- Wells, Peter -- Bi, F Christopher -- Hamel, Damon J -- Kuhn, Peter -- Handel, Tracy M -- Cherezov, Vadim -- Stevens, Raymond C -- F32 GM083463/GM/NIGMS NIH HHS/ -- F32 GM083463-03/GM/NIGMS NIH HHS/ -- GM075915/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-07/GM/NIGMS NIH HHS/ -- R01 AI037113/AI/NIAID NIH HHS/ -- R01 AI037113-13/AI/NIAID NIH HHS/ -- R01 GM071872/GM/NIGMS NIH HHS/ -- R01 GM081763/GM/NIGMS NIH HHS/ -- R01 GM081763-03/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- R21 AI087189/AI/NIAID NIH HHS/ -- R21 AI087189-02/AI/NIAID NIH HHS/ -- R21 RR025336/RR/NCRR NIH HHS/ -- R21 RR025336-01A1/RR/NCRR NIH HHS/ -- U54 GM074961/GM/NIGMS NIH HHS/ -- U54 GM074961-050001/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1066-71. doi: 10.1126/science.1194396. Epub 2010 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chemokine CXCL12 ; Crystallography, X-Ray ; HIV Envelope Protein gp120/metabolism ; Humans ; Membrane Proteins ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Receptors, CXCR4/antagonists & inhibitors/*chemistry/metabolism ; Recombinant Proteins/chemistry ; Spodoptera ; Thiourea/analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...