ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 173 (1990), S. 346-350 
    ISSN: 0006-291X
    Keywords: [abr] CKB; creatine phosphokinase B ; [abr] PKC; protein kinase C ; [abr] PMSF; phenylmethylsulfonyl fluoride ; [abr] TPA; 12-O-tetradecanoylphorbol-13-acetate
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 173 (1990), S. 351-357 
    ISSN: 0006-291X
    Keywords: [abr] CKB; creatine phosphokinase B ; [abr] EB; extraction buffer ; [abr] EGF; epidermal growth factor ; [abr] PKC; protein kinase C ; [abr] PMSF; phenylmethylsulfonyl fluoride ; [abr] TPA; 12-O-tetradecanoylphorbol-13-acetate
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 173 (1990), S. 346-350 
    ISSN: 0006-291X
    Keywords: [abr] CKB; creatine phosphokinase B ; [abr] PKC; protein kinase C ; [abr] PMSF; phenylmethylsulfonyl fluoride ; [abr] TPA; 12-O-tetradecanoylphorbol-13-acetate
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 173 (1990), S. 351-357 
    ISSN: 0006-291X
    Keywords: [abr] CKB; creatine phosphokinase B ; [abr] EB; extraction buffer ; [abr] EGF; epidermal growth factor ; [abr] PKC; protein kinase C ; [abr] PMSF; phenylmethylsulfonyl fluoride ; [abr] TPA; 12-O-tetradecanoylphorbol-13-acetate
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-12-17
    Description: Might DNA sequence variation reflect germline genetic activity and underlying chromatin structure? We investigated this question using medaka (Japanese killifish, Oryzias latipes), by comparing the genomic sequences of two strains (Hd-rR and HNI) and by mapping approximately 37.3 million nucleosome cores from Hd-rR blastulae and 11,654 representative transcription start sites from six embryonic stages. We observed a distinctive approximately 200-base pair (bp) periodic pattern of genetic variation downstream of transcription start sites; the rate of insertions and deletions longer than 1 bp peaked at positions of approximately +200, +400, and +600 bp, whereas the point mutation rate showed corresponding valleys. This approximately 200-bp periodicity was correlated with the chromatin structure, with nucleosome occupancy minimized at positions 0, +200, +400, and +600 bp. These data exemplify the potential for genetic activity (transcription) and chromatin structure to contribute to molding the DNA sequence on an evolutionary time scale.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757552/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757552/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasaki, Shin -- Mello, Cecilia C -- Shimada, Atsuko -- Nakatani, Yoichiro -- Hashimoto, Shin-Ichi -- Ogawa, Masako -- Matsushima, Kouji -- Gu, Sam Guoping -- Kasahara, Masahiro -- Ahsan, Budrul -- Sasaki, Atsushi -- Saito, Taro -- Suzuki, Yutaka -- Sugano, Sumio -- Kohara, Yuji -- Takeda, Hiroyuki -- Fire, Andrew -- Morishita, Shinichi -- R01 GM037706/GM/NIGMS NIH HHS/ -- R01 GM037706-24/GM/NIGMS NIH HHS/ -- R01 GM37706/GM/NIGMS NIH HHS/ -- T32 CA009151/CA/NCI NIH HHS/ -- T32 CA09151/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):401-4. doi: 10.1126/science.1163183. Epub 2008 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, 277-0882, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19074313" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Base Sequence ; Chromatin/*physiology/ultrastructure ; DNA/chemistry/*genetics ; DNA Repair ; *Genetic Variation ; Genome ; INDEL Mutation ; Mutagenesis ; Mutation ; Nucleosomes/*physiology/ultrastructure ; Oryzias/embryology/*genetics ; Point Mutation ; Promoter Regions, Genetic ; *Transcription Initiation Site ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-10-05
    Description: Mitochondrial morphology is crucial for tissue homeostasis, but its role in cell differentiation is unclear. We found that mitochondrial fusion was required for proper cardiomyocyte development. Ablation of mitochondrial fusion proteins Mitofusin 1 and 2 in the embryonic mouse heart, or gene-trapping of Mitofusin 2 or Optic atrophy 1 in mouse embryonic stem cells (ESCs), arrested mouse heart development and impaired differentiation of ESCs into cardiomyocytes. Gene expression profiling revealed decreased levels of transcription factors transforming growth factor-beta/bone morphogenetic protein, serum response factor, GATA4, and myocyte enhancer factor 2, linked to increased Ca(2+)-dependent calcineurin activity and Notch1 signaling that impaired ESC differentiation. Orchestration of cardiomyocyte differentiation by mitochondrial morphology reveals how mitochondria, Ca(2+), and calcineurin interact to regulate Notch1 signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kasahara, Atsuko -- Cipolat, Sara -- Chen, Yun -- Dorn, Gerald W 2nd -- Scorrano, Luca -- GPP10005/Telethon/Italy -- R01 HL059888/HL/NHLBI NIH HHS/ -- R01 HL59888/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):734-7. doi: 10.1126/science.1241359. Epub 2013 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Physiology and Metabolism, University of Geneva, 1206 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24091702" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/*metabolism ; Calcineurin Inhibitors ; Cell Differentiation/genetics/*physiology ; GTP Phosphohydrolases/genetics/metabolism ; Gene Expression Profiling ; Heart/embryology ; Mice ; Mice, Knockout ; Mitochondrial Dynamics/genetics/*physiology ; Myocytes, Cardiac/*cytology/ultrastructure ; Receptor, Notch1/*metabolism ; Signal Transduction ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-23
    Description: The neuromuscular junction (NMJ) is the synapse between a motor neuron and skeletal muscle. Defects in NMJ transmission cause muscle weakness, termed myasthenia. The muscle protein Dok-7 is essential for activation of the receptor kinase MuSK, which governs NMJ formation, and DOK7 mutations underlie familial limb-girdle myasthenia (DOK7 myasthenia), a neuromuscular disease characterized by small NMJs. Here, we show in a mouse model of DOK7 myasthenia that therapeutic administration of an adeno-associated virus (AAV) vector encoding the human DOK7 gene resulted in an enlargement of NMJs and substantial increases in muscle strength and life span. When applied to model mice of another neuromuscular disorder, autosomal dominant Emery-Dreifuss muscular dystrophy, DOK7 gene therapy likewise resulted in enlargement of NMJs as well as positive effects on motor activity and life span. These results suggest that therapies aimed at enlarging the NMJ may be useful for a range of neuromuscular disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arimura, Sumimasa -- Okada, Takashi -- Tezuka, Tohru -- Chiyo, Tomoko -- Kasahara, Yuko -- Yoshimura, Toshiro -- Motomura, Masakatsu -- Yoshida, Nobuaki -- Beeson, David -- Takeda, Shin'ichi -- Yamanashi, Yuji -- G0701521/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1505-8. doi: 10.1126/science.1250744.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan. ; Department of Occupational Therapy, Nagasaki University School of Health Sciences, Nagasaki, Japan. ; Department of Electrical and Electronics Engineering, Faculty of Engineering, Nagasaki Institute of Applied Science, Nagasaki, Japan. ; Laboratory of Developmental Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. ; Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. yyamanas@ims.u-tokyo.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237101" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dependovirus ; Disease Models, Animal ; Female ; Genetic Therapy/*methods ; Genetic Vectors/administration & dosage ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Muscle Proteins/*genetics ; Muscle, Skeletal/*innervation/physiopathology ; Muscular Dystrophies, Limb-Girdle/genetics/*pathology/*therapy ; Neuromuscular Junction/*pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatesh, Byrappa -- Lee, Alison P -- Swann, Jeremy B -- Ohta, Yuko -- Flajnik, Martin F -- Kasahara, Masanori -- Boehm, Thomas -- Warren, Wesley C -- U54 HG003079/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Jul 10;511(7508):E9-10. doi: 10.1038/nature13447.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673. [2] Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228. ; Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673. ; Department of Developmental Immunology, Max-Planck-Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany. ; Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland 21201, USA. ; Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan. ; The Genome Institute at Washington University, St. Louis, Missouri 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25008535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Evolution, Molecular ; Genome/*genetics ; Sharks/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-06-23
    Description: It is generally accepted that the direct connection from the motor cortex to spinal motor neurons is responsible for dexterous hand movements in primates. However, the role of the 'phylogenetically older' indirect pathways from the motor cortex to motor neurons, mediated by spinal interneurons, remains elusive. Here we used a novel double-infection technique to interrupt the transmission through the propriospinal neurons (PNs), which act as a relay of the indirect pathway in macaque monkeys (Macaca fuscata and Macaca mulatta). The PNs were double infected by injection of a highly efficient retrograde gene-transfer vector into their target area and subsequent injection of adeno-associated viral vector at the location of cell somata. This method enabled reversible expression of green fluorescent protein (GFP)-tagged tetanus neurotoxin, thereby permitting the selective and temporal blockade of the motor cortex-PN-motor neuron pathway. This treatment impaired reach and grasp movements, revealing a critical role for the PN-mediated pathway in the control of hand dexterity. Anti-GFP immunohistochemistry visualized the cell bodies and axonal trajectories of the blocked PNs, which confirmed their anatomical connection to motor neurons. This pathway-selective and reversible technique for blocking neural transmission does not depend on cell-specific promoters or transgenic techniques, and is a new and powerful tool for functional dissection in system-level neuroscience studies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kinoshita, Masaharu -- Matsui, Ryosuke -- Kato, Shigeki -- Hasegawa, Taku -- Kasahara, Hironori -- Isa, Kaoru -- Watakabe, Akiya -- Yamamori, Tetsuo -- Nishimura, Yukio -- Alstermark, Bror -- Watanabe, Dai -- Kobayashi, Kazuto -- Isa, Tadashi -- England -- Nature. 2012 Jul 12;487(7406):235-8. doi: 10.1038/nature11206.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722837" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dependovirus/genetics ; Green Fluorescent Proteins/metabolism ; Hand/*physiology ; Macaca ; Metalloendopeptidases/metabolism ; Motor Cortex/physiology ; Motor Neurons/*physiology ; *Neurosciences ; Synaptic Transmission/genetics/physiology ; Tetanus Toxin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-10
    Description: The emergence of jawed vertebrates (gnathostomes) from jawless vertebrates was accompanied by major morphological and physiological innovations, such as hinged jaws, paired fins and immunoglobulin-based adaptive immunity. Gnathostomes subsequently diverged into two groups, the cartilaginous fishes and the bony vertebrates. Here we report the whole-genome analysis of a cartilaginous fish, the elephant shark (Callorhinchus milii). We find that the C. milii genome is the slowest evolving of all known vertebrates, including the 'living fossil' coelacanth, and features extensive synteny conservation with tetrapod genomes, making it a good model for comparative analyses of gnathostome genomes. Our functional studies suggest that the lack of genes encoding secreted calcium-binding phosphoproteins in cartilaginous fishes explains the absence of bone in their endoskeleton. Furthermore, the adaptive immune system of cartilaginous fishes is unusual: it lacks the canonical CD4 co-receptor and most transcription factors, cytokines and cytokine receptors related to the CD4 lineage, despite the presence of polymorphic major histocompatibility complex class II molecules. It thus presents a new model for understanding the origin of adaptive immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964593/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964593/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatesh, Byrappa -- Lee, Alison P -- Ravi, Vydianathan -- Maurya, Ashish K -- Lian, Michelle M -- Swann, Jeremy B -- Ohta, Yuko -- Flajnik, Martin F -- Sutoh, Yoichi -- Kasahara, Masanori -- Hoon, Shawn -- Gangu, Vamshidhar -- Roy, Scott W -- Irimia, Manuel -- Korzh, Vladimir -- Kondrychyn, Igor -- Lim, Zhi Wei -- Tay, Boon-Hui -- Tohari, Sumanty -- Kong, Kiat Whye -- Ho, Shufen -- Lorente-Galdos, Belen -- Quilez, Javier -- Marques-Bonet, Tomas -- Raney, Brian J -- Ingham, Philip W -- Tay, Alice -- Hillier, LaDeana W -- Minx, Patrick -- Boehm, Thomas -- Wilson, Richard K -- Brenner, Sydney -- Warren, Wesley C -- AI27877/AI/NIAID NIH HHS/ -- R01 AI027877/AI/NIAID NIH HHS/ -- R01 OD010549/OD/NIH HHS/ -- RR006603/RR/NCRR NIH HHS/ -- U41 HG002371/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Jan 9;505(7482):174-9. doi: 10.1038/nature12826.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673 [2] Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228. ; Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673. ; Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673. ; Department of Developmental Immunology, Max-Planck-Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany. ; Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland 21201, USA. ; Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan. ; Molecular Engineering Laboratory, Biomedical Sciences Institutes, A*STAR, Biopolis, Singapore 138673. ; Department of Biology, San Francisco State University, San Francisco, California 94132, USA. ; Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ; Fish Developmental Biology Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673. ; 1] Institut de Biologia Evolutiva (UPF-CSIC), PRBB, 08003 Barcelona, Spain [2] Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Catalonia, Spain. ; Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA. ; The Genome Institute at Washington University, St Louis, Missouri 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402279" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Cell Lineage/immunology ; *Evolution, Molecular ; Fish Proteins/classification/genetics ; Gene Deletion ; Genome/*genetics ; Genomics ; Immunity, Cellular/genetics ; Molecular Sequence Annotation ; Molecular Sequence Data ; Osteogenesis/genetics ; Phosphoproteins/genetics/metabolism ; Phylogeny ; Protein Structure, Tertiary/genetics ; Sharks/*genetics/immunology ; T-Lymphocytes/cytology/immunology ; Time Factors ; Vertebrates/classification/genetics ; Zebrafish/genetics/growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...