ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino acid utilization  (1)
  • Clostridium cellobioparum  (1)
  • Clostridium thermoautotrophicum  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 145 (1986), S. 159-161 
    ISSN: 1432-072X
    Keywords: Clostridium cellobioparum ; Clostridium thermocellum ; Ammonium assimilation ; Nitrogen fixation ; Nitrogen control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Inorganic nitrogen metabolism in two cellulose degrading clostridia, the mesophile Clostridium cellobioparum and the thermophile Clostridium thermocellum was investigated. Both strains show acetylene reduction (i.e. possibly nitrogenase activity), contain glutamine synthetase, glutamate dehydrogenase and glutamate-dependent transaminases. C. cellobioparum additionally contains a NADH-dependent glutamate synthase and a NH 4 + -repressible glycine dehydrogenase (NADPH). Remarkably, acetylene reduction in C. thermocellum is not repressed by ammonium, casting doubt whether this activity is due to nitrogenase. The results are compared with the data from other saccharolytic clostridia.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Clostridium thermosaccharolyticum ; Clostridium thermoautotrophicum ; Thermophilic nitrogenase ; Ammonium assimilation ; Nitrogen control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Inorganic nitrogen metabolism in the obligate anaerobic thermophiles Chlostridium thermosaccharolyticum and Clostridium thermoautotrophicum differs in several respects. C. thermosaccharolyticum contains a nitrogenase as inferred from NH 4 + repressible C2H2 reduction, a glutamine synthetase which is partially repressed by ammonium, very labile glutamate synthase activities with both NADH and NADPH, NADPH-dependent glutamate dehydrogenase, and NH 4 + -dependent asparagine synthetase. C. thermoautotrophicum contains no nitrogenase, but glutamine synthetase, no glutamate synthase, no glutamate dehydrogenase, but a NADH-dependent alanine dehydrogenase and a NH 4 + -dependent asparagine synthetase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 166 (1996), S. 388-393 
    ISSN: 1432-072X
    Keywords: Ammonium metabolism ; glnAntrBC ; Nitrogenase regulation ; Nitrogen control ; Ammonia excretion ; Amino acid utilization ; Ntr
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Enterobacterial mutants defective in the nitrogen control regulatory system (Ntr) generally display a pleiotropic phenotype with regard to expression and regulation of several enzymes and transport systems involved in the assimilation of N sources. This report describes the isolation and characterization of similar pleiotropic mutants ofKlebsiella pneumoniae that cannot be complemented byntr genes. The strains excreted ammonia, were unable to grow on a number of N sources, and contained low glutamine:2-oxoglutarate amino transferase and normal, but unmodifiable glutamine synthetase activities and a nitrogenase level largely unaffected by ammonium, but still repressible by an amino acid mixture. Genetic studies suggested that this phenotype is due to overexpression of an unknown regulatory protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...