Skip to main content
Log in

Ammonia-excreting mutants ofKlebsiella pneumoniae with a pleiotropic defect in nitrogen metabolism

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Enterobacterial mutants defective in the nitrogen control regulatory system (Ntr) generally display a pleiotropic phenotype with regard to expression and regulation of several enzymes and transport systems involved in the assimilation of N sources. This report describes the isolation and characterization of similar pleiotropic mutants ofKlebsiella pneumoniae that cannot be complemented byntr genes. The strains excreted ammonia, were unable to grow on a number of N sources, and contained low glutamine:2-oxoglutarate amino transferase and normal, but unmodifiable glutamine synthetase activities and a nitrogenase level largely unaffected by ammonium, but still repressible by an amino acid mixture. Genetic studies suggested that this phenotype is due to overexpression of an unknown regulatory protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GS :

Glutamine synthetase

GOGAT :

Glutamate synthase

ATase :

Adenylyl transferase

Ntr :

Nitrogen regulatory system

References

  • Allikmets R, Gerrard B, Court D, Dean M (1993) Cloning and organization of theabc andmdl genes ofEscherichia coli: relationship to eukaryotic multidrug resistance. Gene 136:231–236

    PubMed  Google Scholar 

  • Bergmeyer U (1974) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim

    Google Scholar 

  • Calvo JM, Matthews RG (1994) The leucine-responsive regulatory protein, a global regulator of metabolism inEscherichia coli. Microbiol Rev 58:466–490

    PubMed  Google Scholar 

  • Castano I, Bastarrachea F, Covarrubias A (1988)gltBDF Operon ofEscherichia coli. J Bacteriol 170:821–827

    PubMed  Google Scholar 

  • Castorph H, Kleiner D (1984) Some properties of aKlebsiella pneumoniae ammonium transport negative mutant (Amt). Arch Microbiol 139:245–247

    PubMed  Google Scholar 

  • Espin G, Alvarez-Morales A, Merrick M (1981) Complementation analysis ofglnA-linked mutations which affect nitrogen fixation inKlebsiella pneumoniae. Mol Gen Genet 184:213–217

    PubMed  Google Scholar 

  • Espin G, Alvarez-Morales A, Cannon F, Dixon R, Merrick M (1982) Cloning of theglnA, ntrB andntrC genes ofKlebsiella pneumoniae and studies of their role in regulation of the nitrogen fixation (nif) gene cluster. Mol Gen Genet 186:518–524

    PubMed  Google Scholar 

  • Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    PubMed  Google Scholar 

  • Goa J (1953) A microbioret method for protein determination. Scand J Clin Lab Invest 5:218–222

    PubMed  Google Scholar 

  • Groisman EA, Castilho BA, Casadaban MJ (1984) In vitro DNA cloning and adjacent gene fusion with a mini-Mu-lac bacteriophage containing a plasmid replicon. Proc Natl Acad Sci USA 81:1480–1483

    PubMed  Google Scholar 

  • Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197

    PubMed  Google Scholar 

  • Holtel A, Merrick M (1988) Identification of theKlebsiella pneumoniae glnB gene: nucleotide sequence of the wild type and mutant alleles. Mol Gen Genet 215:134–138

    PubMed  Google Scholar 

  • Kleiner D (1985) Bacterial ammonium transport. FEMS Microbiol Rev 32:87–100

    Google Scholar 

  • Kleiner D (1991) Regulation des Stickstoff-Katabolismus bei Bakterien. Bioforum 14:118–122

    Google Scholar 

  • Kleiner D, Paul W, Merrick M (1988) Construction of multicopy expression vectors for regulated overproduction of proteins inKlebsiella pneumoniae and other enteric bacteria. J Gen Microbiol 134:1779–1784

    PubMed  Google Scholar 

  • Kuczius T, Eitinger T, D Ari R, Castorph H, Kleiner D (1991) ThegltF gene ofKlebsiella pneumoniae: cloning and initial characterization. Mol Gen Genet 229:479–482

    PubMed  Google Scholar 

  • Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209

    PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Google Scholar 

  • Magasanik B (1988) Reversible phosphorylation of an enhancer binding protein regulates the transcription of bacterial nitrogen utilization genes. Trends Biochem Sci 13:475–479

    PubMed  Google Scholar 

  • Magasanik B (1993) The regulation of nitrogen utilization in enteric bacteria. J Cell Biochem 51:34–40

    PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Masterson RV, Prakash RK, Atherly AG (1985) Conservation of symbiotic nitrogen fixation gene sequences inRhizobium japonicum andBradyrhizobium japonicum. J Bacteriol 163:21–26

    PubMed  Google Scholar 

  • Merrick MJ, Edwards R (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    PubMed  Google Scholar 

  • Merrick M, Hill S, Hennecke H, Hahn M, Dixon R, Kennedy C (1982) Repressor properties of thenifL gene product inKlebsiella pneumoniae. Mol Gen Genet 185:75–81

    Google Scholar 

  • Merrick M, Gibbins JR, Postgate JR (1987) A rapid and efficient method for plasmid transformation ofKlebsiella pneumoniae andEscherichia coli. J Gen Microbiol 133:2053–2057

    PubMed  Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Habor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Ninnemann O, Jauniaux JC, Frommer W (1994) Identification of a high affinity NH +4 transporter from plants. EMBO J 13:3464–3471

    PubMed  Google Scholar 

  • Pengra RM, Wilson PW (1958) Physiology of nitrogen fixation byAerobacter aerogenes. J Bacteriol 75:21–25

    PubMed  Google Scholar 

  • Rej R, Horder M (1983) Aspartate aminotransferase (glutamate oxaloacetate transminase). In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3. Verlag Chemie, Weinheim, pp 416–423

    Google Scholar 

  • Rieder G, Merrick MJ, Castorph H, Kleiner D (1994) Function ofhisF andhisH gene products in histidine biosynthesis. J Biol Chem 269:14386–14390

    PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    PubMed  Google Scholar 

  • Shanmugam KT, Morandi C (1976) Amino acids as repressors of nitrogenase biosynthesis inKlebsiella pneumoniae. Biochim Biophys Acta 437:322–332

    PubMed  Google Scholar 

  • Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Krumer R (1966) Functional and genetic characterization of the (methyl)ammonium uptake carrier ofCorynebacterium glutamicum. J Biol Chem 271:5398–5403

    Google Scholar 

  • Takeshita S, Sato M, Toba M, Masahashi W, Hashimoto-Gotoh T (1987) High-copy-number and low-copy-number plasmid vectors forlacZ-complementation and chloramphenicol-or kanamycin-resistance selection. Gene 61:63–74

    PubMed  Google Scholar 

  • Tyler B (1978) Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem 47:1127–1162

    PubMed  Google Scholar 

  • Van Heeswijk WC, Stegeman B, Hoving S, Molenaar D, Kahn D, Westerhoff HV (1995) An additional PII inEscherichia coli: a new regulatory protein in the glutamine synthetase cascade. FEMS Microbiol Lett 132:153–157

    PubMed  Google Scholar 

  • Wiegel J, Kleiner D (1982) Survey of ammonium (methylammonium) transport by aerobic N2 fixing bacteria-the special case ofRhizobium. FEMS Microbiol Lett 15:61–63

    Google Scholar 

  • Willison J, Tissot G (1994) TheEscherichia coli efg gene and theRhodobacter capsulatus adgA gene code for NH3-dependent NAD synthetase. J Bacteriol 176:3400–3402

    PubMed  Google Scholar 

  • Wray LV, Atkinson MR, Fisher SH (1994) The nitrogen-regulatedBacillus subtilis nrgAB operon encodes a membrane protein and a protein highly similar to theEscherichia glnB-encoded PII protein. J Bacteriol 176:108–114

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Kleiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuczius, T., Kleiner, D. Ammonia-excreting mutants ofKlebsiella pneumoniae with a pleiotropic defect in nitrogen metabolism. Arch. Microbiol. 166, 388–393 (1996). https://doi.org/10.1007/BF01682984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01682984

Key words

Navigation