ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Calcium/*metabolism  (3)
  • Amino Acid Motifs  (2)
  • Calcium Channels/chemistry/*metabolism  (2)
  • 1
    Publication Date: 2001-02-13
    Description: We cloned and characterized a protein kinase and ion channel, TRP-PLIK. As part of the long transient receptor potential channel subfamily implicated in control of cell division, it is a protein that is both an ion channel and a protein kinase. TRP-PLIK phosphorylated itself, displayed a wide tissue distribution, and, when expressed in CHO-K1 cells, constituted a nonselective, calcium-permeant, 105-picosiemen, steeply outwardly rectifying conductance. The zinc finger containing alpha-kinase domain was functional. Inactivation of the kinase activity by site-directed mutagenesis and the channel's dependence on intracellular adenosine triphosphate (ATP) demonstrated that the channel's kinase activity is essential for channel function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Runnels, L W -- Yue, L -- Clapham, D E -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):1043-7. Epub 2001 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Cardiology, Department of Neurobiology, Harvard Medical School, 1309 Enders Building, 320 Longwood Avenue, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161216" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; CHO Cells ; Calcium/metabolism ; Catalytic Domain ; Cations/metabolism ; Cell Line ; Cricetinae ; DNA, Complementary ; Electric Conductivity ; Humans ; Ion Channels/chemistry/*genetics/*metabolism ; *Membrane Proteins ; Mice ; Molecular Sequence Data ; Mutation ; Myelin Basic Protein/metabolism ; Patch-Clamp Techniques ; Phosphorylation ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein-Serine-Threonine Kinases ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; TRPM Cation Channels ; Transfection ; Two-Hybrid System Techniques ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-12-18
    Description: The pore-forming subunits of canonical voltage-gated sodium and calcium channels are encoded by four repeated domains of six-transmembrane (6TM) segments. We expressed and characterized a bacterial ion channel (NaChBac) from Bacillus halodurans that is encoded by one 6TM segment. The sequence, especially in the pore region, is similar to that of voltage-gated calcium channels. The expressed channel was activated by voltage and was blocked by calcium channel blockers. However, the channel was selective for sodium. The identification of NaChBac as a functionally expressed bacterial voltage-sensitive ion-selective channel provides insight into both voltage-dependent activation and divalent cation selectivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ren, D -- Navarro, B -- Xu, H -- Yue, L -- Shi, Q -- Clapham, D E -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2372-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Enders 1309, 320 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743207" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Bacillus/*chemistry/genetics/metabolism ; *Bacterial Proteins ; CHO Cells ; COS Cells ; Calcium/metabolism ; Calcium Channel Blockers/pharmacology ; Calcium Channels/chemistry/metabolism ; Cricetinae ; Dihydropyridines/pharmacology ; Genes, Bacterial ; Ion Channel Gating ; Membrane Potentials ; Molecular Sequence Data ; Molecular Weight ; Open Reading Frames ; Patch-Clamp Techniques ; Protein Structure, Tertiary ; Recombinant Proteins/metabolism ; Sodium/*metabolism ; Sodium Channels/chemistry/*genetics/*metabolism ; Tetrodotoxin/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-10-03
    Description: Mitochondria are integral components of cellular calcium (Ca2+) signaling. Calcium stimulates mitochondrial adenosine 5'-triphosphate production, but can also initiate apoptosis. In turn, cytoplasmic Ca2+ concentrations are regulated by mitochondria. Although several transporter and ion-channel mechanisms have been measured in mitochondria, the molecules that govern Ca2+ movement across the inner mitochondrial membrane are unknown. We searched for genes that regulate mitochondrial Ca2+ and H+ concentrations using a genome-wide Drosophila RNA interference (RNAi) screen. The mammalian homolog of one Drosophila gene identified in the screen, Letm1, was found to specifically mediate coupled Ca2+/H+ exchange. RNAi knockdown, overexpression, and liposome reconstitution of the purified Letm1 protein demonstrate that Letm1 is a mitochondrial Ca2+/H+ antiporter.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Dawei -- Zhao, Linlin -- Clapham, David E -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Oct 2;326(5949):144-7. doi: 10.1126/science.1175145.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiology, Howard Hughes Medical Institute, Children's Hospital Boston, Manton Center for Orphan Disease, and Department of Neurobiology, Harvard Medical School, Enders Building 1309, 320 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19797662" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiporters/*genetics/metabolism ; Calcium/*metabolism ; Calcium-Binding Proteins/*genetics/*metabolism ; Cation Transport Proteins/genetics/metabolism ; Cell Line ; Drosophila Proteins/*genetics/metabolism ; Drosophila melanogaster/*genetics/metabolism ; Genome, Human ; Genome, Insect ; HeLa Cells ; Humans ; Hydrogen/metabolism ; Hydrogen-Ion Concentration ; Ion Transport ; Membrane Potential, Mitochondrial ; Membrane Proteins/*genetics/*metabolism ; Mitochondria/*metabolism ; Mitochondrial Membranes/metabolism ; Mitochondrial Proteins/genetics/*metabolism ; Proteolipids/metabolism ; *RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-03-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clapham, David E -- New York, N.Y. -- Science. 2002 Mar 22;295(5563):2228-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Cardiovascular Division, Children's Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA. dclapham@enders.tch.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11910099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channels/chemistry/*metabolism ; Capsaicin/metabolism ; *Cold Temperature ; Ganglia, Spinal/metabolism ; Hot Temperature ; Ion Channel Gating ; Menthol/*metabolism ; Mice ; Mouth/physiology ; *Signal Transduction ; Skin Physiological Phenomena ; TRPC Cation Channels ; Taste/physiology ; Touch/physiology ; Trigeminal Ganglion/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-12-18
    Description: Primary cilia are solitary, non-motile extensions of the centriole found on nearly all nucleated eukaryotic cells between cell divisions. Only approximately 200-300 nm in diameter and a few micrometres long, they are separated from the cytoplasm by the ciliary neck and basal body. Often called sensory cilia, they are thought to receive chemical and mechanical stimuli and initiate specific cellular signal transduction pathways. When activated by a ligand, hedgehog pathway proteins, such as GLI2 and smoothened (SMO), translocate from the cell into the cilium. Mutations in primary ciliary proteins are associated with severe developmental defects. The ionic conditions, permeability of the primary cilia membrane, and effectiveness of the diffusion barriers between the cilia and cell body are unknown. Here we show that cilia are a unique calcium compartment regulated by a heteromeric TRP channel, PKD1L1-PKD2L1, in mice and humans. In contrast to the hypothesis that polycystin (PKD) channels initiate changes in ciliary calcium that are conducted into the cytoplasm, we show that changes in ciliary calcium concentration occur without substantially altering global cytoplasmic calcium. PKD1L1-PKD2L1 acts as a ciliary calcium channel controlling ciliary calcium concentration and thereby modifying SMO-activated GLI2 translocation and GLI1 expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112737/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112737/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delling, Markus -- DeCaen, Paul G -- Doerner, Julia F -- Febvay, Sebastien -- Clapham, David E -- P01 NS072040/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30-HD 18655/HD/NICHD NIH HHS/ -- T32-HL007572/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 12;504(7479):311-4. doi: 10.1038/nature12833.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, USA [2]. ; Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, USA. ; 1] Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, USA [2] Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336288" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Channels/chemistry/*metabolism ; *Calcium Signaling ; Cells, Cultured ; Cilia/*metabolism ; Cytoplasm/metabolism ; Female ; Hedgehog Proteins/deficiency/genetics/*metabolism ; Humans ; Kruppel-Like Transcription Factors/metabolism ; Male ; Membrane Proteins/chemistry/deficiency/metabolism ; Mice ; Nuclear Proteins/metabolism ; Organelles/*metabolism ; Receptors, Cell Surface/chemistry/metabolism ; Receptors, G-Protein-Coupled/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-12-15
    Description: Intact, isolated nuclei and a nuclear membrane (ghost) preparation were used to study regulation of the movement of small molecules across the Xenopus laevis oocyte nuclear membrane. In contrast to models of the nuclear pore complex, which assume passive bidirectional diffusion of molecules less than 70 kilodaltons, diffusion of intermediate-sized molecules was regulated by the nuclear envelope calcium stores. After depletion of nuclear store calcium by inositol 1,4,5-trisphosphate or calcium chelators, fluorescent molecules conjugated to 10-kilodalton dextran were unable to enter the nucleus. Dye exclusion after calcium store depletion was not dependent on the nuclear matrix because it occurred in nuclear ghosts lacking nucleoplasm. Smaller molecules and ions (500-dalton Lucifer yellow and manganese) diffused freely into the core of the nuclear ghosts and intact nuclei even after calcium store depletion. Thus, depletion of the nuclear calcium store blocks diffusion of intermediate-sized molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stehno-Bittel, L -- Perez-Terzic, C -- Clapham, D E -- 41303/PHS HHS/ -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1835-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Mayo Foundation, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525380" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Biological Transport ; Calcium/*metabolism ; Cell Nucleus/*metabolism ; Diffusion ; Fluorescent Dyes ; In Vitro Techniques ; Inositol 1,4,5-Trisphosphate/metabolism ; Manganese/metabolism ; Nuclear Envelope/*metabolism ; Oocytes/metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-09-27
    Description: The nuclear pore complex (NPC) is essential for the transit of molecules between the cytoplasm and nucleoplasm of a cell and until recently was thought to allow intermediate-sized molecules (relative molecular mass of approximately 10,000) to diffuse freely across the nuclear envelope. However, the depletion of calcium from the nuclear envelope of Xenopus laevis oocytes was shown to regulate the passage of intermediate-sized molecules. Two distinct conformational states of the NPC were observed by field emission scanning electron microscopy and atomic force microscopy. A central plug occluded the NPC channel after nuclear calcium stores had been depleted and free diffusion of intermediate-sized molecules had been blocked. Thus, the NPC conformation appears to gate molecular movement across the nuclear envelope.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perez-Terzic, C -- Pyle, J -- Jaconi, M -- Stehno-Bittel, L -- Clapham, D E -- New York, N.Y. -- Science. 1996 Sep 27;273(5283):1875-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Mayo Foundation, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8791595" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Cell Nucleus/*metabolism ; Chelating Agents/pharmacology ; Diffusion ; Egtazic Acid/analogs & derivatives/pharmacology ; Female ; Inositol 1,4,5-Trisphosphate/pharmacology ; Microscopy, Atomic Force ; Microscopy, Electron ; Nuclear Envelope/metabolism/*ultrastructure ; Oocytes ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...