ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-06-12
    Description: Gene-targeted mice lacking the L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunit GluR-A exhibited normal development, life expectancy, and fine structure of neuronal dendrites and synapses. In hippocampal CA1 pyramidal neurons, GluR-A-/- mice showed a reduction in functional AMPA receptors, with the remaining receptors preferentially targeted to synapses. Thus, the CA1 soma-patch currents were strongly reduced, but glutamatergic synaptic currents were unaltered; and evoked dendritic and spinous Ca2+ transients, Ca2+-dependent gene activation, and hippocampal field potentials were as in the wild type. In adult GluR-A-/- mice, associative long-term potentiation (LTP) was absent in CA3 to CA1 synapses, but spatial learning in the water maze was not impaired. The results suggest that CA1 hippocampal LTP is controlled by the number or subunit composition of AMPA receptors and show a dichotomy between LTP in CA1 and acquisition of spatial memory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zamanillo, D -- Sprengel, R -- Hvalby, O -- Jensen, V -- Burnashev, N -- Rozov, A -- Kaiser, K M -- Koster, H J -- Borchardt, T -- Worley, P -- Lubke, J -- Frotscher, M -- Kelly, P H -- Sommer, B -- Andersen, P -- Seeburg, P H -- Sakmann, B -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1805-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Neuroscience, Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364547" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Bicuculline/pharmacology ; Calcium/metabolism ; Dendrites/physiology/ultrastructure ; GABA Antagonists/pharmacology ; Gene Expression ; Gene Targeting ; Genes, Immediate-Early ; Glutamic Acid/pharmacology/physiology ; Hippocampus/cytology/physiology ; Long-Term Potentiation/*physiology ; *Maze Learning ; Mice ; Mice, Inbred C57BL ; Pyramidal Cells/*physiology/ultrastructure ; Receptors, AMPA/genetics/*physiology ; Receptors, N-Methyl-D-Aspartate/physiology ; Synapses/*physiology/ultrastructure ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 497-502 
    ISSN: 0006-3592
    Keywords: poly-β-hydroxybutyrate ; molcular weight distribution ; Alcaligens eutrophus ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of magnesium and phosphate limitation on the molecular weight distribution of poly-β-hydroxybutyrate (PHB) in Alcaligens europhus in cotinuons culture has been stuied. Conditions of nitrogen limitation both with glucose excess (above ca. 20 g/L) and without excess were investigated Under N-limitation and glucose excess, Mw decreases when the magnesium content is decreased below 50% (19.7 mg/L) of the basal medium content; this also results in a broadenng of molecular weight distribution (Mw/Mn) from 2 to 5 and a decrease in Mw fron 2 × 106 to 0.9 × 106. Below 20% of the basal content of magnesium (7.9 mg/L) these two trends were reversed. This behaviour was not observed in the absence of glucose excess, phshate had virtually no effect on PHB Mw or its distribution, whereas wih no (or little) glucose excess Mw of the PHB decreased with phosphate concentrations below 50% of the basal level (0.705 g/L). Hence, in continuous or fed-batch cultures, in addition to nitrogen limitation to alklow for PHB accumulation, it is necesary to control both the addition of glucose (no excess) and also to maintain magnesium limitation (ca. 25% of basal medium level, 9.9 mg/L) and phosphate above 50% of he basal level (0.705 g/L). Thus, when broadening of molecular weight destribution (increase in Mw/Mn) is observed at the end of fed-batch culture it is probably caused by phosphate limitation and/or glucose excess. © 1995 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...