ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: A new testing technique was developed wherein the rate of descent can be included as a parameter in ground effects investigations. This technique simulates the rate of descent by horizontal motion of a model over an inclined ground board in the Langley Vortex Research Facility (VRF) During initial evaluations of the technique, dynamic ground effects data were obtained over the inclined ground board, steady state ground effects data were obtained over a flat portion of the ground board, and the results were compared to conventional static wind tunnel ground effect data both with and without a moving belt ground plane simulation. Initial testing and analysis led to the following conclusions: the moving belt ground plane had little effect on static ground effects for the configurations tested unless thrust reversers were employed; in general, rate-of-descent reduced ground effects to the point that for reversed thrust cases an expected loss of lift due to ground effects was eliminated at approach conditions; and, in general, the steady state results from the VRF matched static results obtained from the wind tunnel once the flow field stabilized over the flat portion of the ground board.
    Keywords: AERODYNAMICS
    Type: NASA, Ames Research Center, The 1987 Ground Vortex Workshop; p 121-146
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: An experimental investigation of a 19 pct. scale model of the X-31 configuration was completed in the Langley 14 x 22 Foot Subsonic Tunnel. This study was performed to determine the static low speed aerodynamic characteristics of the basic configuration over a large range of angle of attack and sideslip and to study the effects of strakes, leading-edge extensions (wing-body strakes), nose booms, speed-brake deployment, and inlet configurations. The ultimate purpose was to optimize the configuration for high angle of attack and maneuvering-flight conditions. The model was tested at angles of attack from -5 to 67 deg and at sideslip angles from -16 to 16 deg for speeds up to 190 knots (dynamic pressure of 120 psf).
    Keywords: AERODYNAMICS
    Type: NASA-TM-4351 , L-16921 , NAS 1.15:4351
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An investigation of the effects of spanwise blowing applied to the lower surface of a trailing-edge flap system on a wing-canard configuration has been conducted in the Langley 4- by 7-Meter Tunnel. The investigation studied spanwise-blowing angles of 30 deg., 45 deg., and 60 deg. measured from a perpendicular to the body center-line. The test conditions covered a range of free-stream dynamic pressures up to 50 psf for thrust coefficients up to 2.1 over a range of angles of attack from -2 deg. to 26 deg. Model height above the wind tunnel floor was varied from a height-to-span ratio of 1.70 down to 0.20 (a representative wheel touchdown height). The results indicate that blowing angles of 30 deg. and 45 deg. increase the induced-lift increment produced by spanwise blowing on the lower surface of a trailing-edge flap system. Increasing the blowing angle to 60 deg., in general, produces little further improvement.
    Keywords: AERODYNAMICS
    Type: NASA-TM-89020 , L-16161 , NAS 1.15:89020
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: An investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to establish a transition data base for an unmanned aerial vehicle utilizing a powered-lift ejector system and to evaluate alterations to the ejector system for improved vehicle performance. The model used in this investigation was a 20-percent-scale, blended-body, arrow-wing configuration with integrated twin rectangular ejectors. The test was conducted from hover through transition conditions with variations in angle of attack, angle of sideslip, free-stream dynamic pressure, nozzle pressure ratio, and model ground height. Force and moment data along with extensive surface pressure data were obtained. A laser velocimeter technique for measuring inlet flow velocities was demonstrated at a single flow condition, and also a low order panel method was successfully used to numerically simulate the ejector inlet flow.
    Keywords: AERODYNAMICS
    Type: NASA-TM-4419 , L-17112 , NAS 1.15:4419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Four advanced nozzle concepts were tested on a canard-wing fighter in the Langley 14- by 22-Foot Subsonic Tunnel. The four vectoring-nozzle concepts were as follows: (1) an axisymmetric nozzle (AXI); (2) an asymmetric, load balanced exhaust nozzle (ALBEN); (3) a low aspect ratio, single expansion ramp nozzle (LASERN); and (4) a high aspect ratio, single expansion ramp nozzle (HASERN). The investigation was conducted to determine the most suitable nozzle concept for short takeoff and landing (STOL) performance. The criterion for the best STOL performance was a takeoff ground roll of less than 1000 ft. At approach, the criteria were high lift and sufficient drag to maintain a glide slope of -3 to -6 deg with enough pitching-moment control from the canards. The test was performed at a dynamic pressure of 45 lb/sq ft and an angle-of-attack range of 0 to 20 deg. The nozzle pressure ratio was varied from 1.0 to 4.3 at both dry power and after burning nozzle configurations with nozzle vectoring to 60 deg. In addition, the model was tested in and out of ground effects. The ALBEN concept was the best of the four nozzle concepts tested for STOL performance.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3314 , L-16998 , NAS 1.60:3314
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A ground-based testing technique is under development for the measurement of dynamic or time-dependent ground effects which may be present during aircraft approach and landing. The technique utilizes a model moving horizontally over an upwardly-inclined ground plane to simulate rate of descent. Results were obtained in the Langley Research Center (LaRC) Vortex Research Facility (VRF) for a generic 60 delta wing and for an F-18 configuration, both with and without thrust reversing, at forward speeds up to 100 ft/sec. These same models and support hardware were also tested in the LaRC 14 by 22 Foot Subsonic Tunnel at identical conditions (but without rate of descent) with and without a moving-belt ground plane to obtain data for comparison.
    Keywords: AERODYNAMICS
    Type: NASA-TM-4080 , L-16481 , NAS 1.15:4080
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: An extensive research program has been underway at the NASA Langley Research Center to define and develop the technologies required for low-speed flight of high-performance aircraft. This 10-year program has placed emphasis on both short takeoff and landing (STOL) and short takeoff and vertical landing (STOVL) operations rather than on regular up and away flight. A series of NASA in-house as well as joint projects have studied various technologies including high lift, vectored thrust, thrust-induced lift, reversed thrust, an alternate method of providing trim and control, and ground effects. These technologies have been investigated on a number of configurations ranging from industry designs for advanced fighter aircraft to generic wing-canard research models. Test conditions have ranged from hover (or static) through transition to wing-borne flight at angles of attack from -5 to 40 deg at representative thrust coefficients.
    Keywords: AERODYNAMICS
    Type: NASA-TP-2796 , L-16364 , NAS 1.60:2796
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: After 4 years of existence, the Langley WTE is alive and growing. Significant improvements in the operation of wind tunnels have been demonstrated and substantial further improvements are expected when we are able to truly address and integrate all the processes affecting the wind tunnel testing cycle.
    Keywords: Research and Support Facilities (Air)
    Type: NASA/CR-1998-207800 , NAS 1.26:207800 , Supersonic Tunnel Association; Apr 26, 1998 - Apr 28, 1998; Brussels; Belgium
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...