ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (5)
  • hydrothermal gases  (3)
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (2)
  • 05.09. Miscellaneous  (2)
Collection
  • 1
    Publication Date: 2017-04-04
    Description: Methane (CH4) emanating from a continental volcanichydrothermal system in Nisyros, Greece, is processed through the abiogenic reduction of mantle- and marine limestonederived CO2 [1]. Evidence for the occurrence of abiogenic hydrothermal reduction of CO2 is from the chemical and carbon isotopic equilibrium patterns. We have further characterized this abiogenic methane (C1) source for the concentrations of ethane (C2) and propane (C3), as well as for the hydrogen isotopic composition of CH4, H2O, H2 and H2S. C1/C2+ ratios are significantly higher than those typically observed for purely thermogenic sources. Hydrocarbon distribution ratios for other continental-hydrothermal sources rich in CO2 are comparable to those of the Nisyros fumaroles implying that abiogenic methane might be significantly more widespread than previously assumed [2]. Relative concentrations of hydrocarbons in continental-hydrothermal discharges are even indistinguishable from those measured in ultramafic hydrothermal emissions. The fact that redox conditions do not seem to exert any control on the relative concentrations of hydrocarbons in hydrothermal emissions in general, implies that the same two sources account for hydrocarbon production in continental and ultramafic environments. One source generates methane exclusively through the selective abiogenic reduction of CO2 (Sabatierreaction). The other source produces minor amounts of methane, ethane and propane by a random process and represents either the thermal cracking of organic matter or the polymerization starting from methane. Hydrogen isotope partitioning between H2O, H2S, H2 and CH4 in Nisyros fumaroles reveals that isotopic exchange rates are highest for H2O-H2S followed by H2O-H2. In contrast to H2 and H2S, the hydrogen isotopic composition of methane exhibits almost no local variations. This is in agreement with its predominantly abiogenic hydrothermal origin and with the low temperature sensitivity of the hydrogen isotope fractionation factor between water vapor and methane.
    Description: Published
    Description: Davos, Switzerland
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: hydrothermal gases ; methane ; ethane ; propane ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In the past, variations in the chemical contents (SO4 2−, Cl−, cations) of crater lake water have not systematically demonstrated any relationships with eruptive activity. Intensive parameters (i.e., concentrations, temperature, pH, salinity) should be converted into extensive parameters (i.e., fluxes, changes with time of mass and solutes), taking into account all the internal and external chemical–physical factors that affect the crater lake system. This study presents a generalized box model approach that can be useful for geochemical monitoring of active crater lakes, as highly dynamic natural systems. The mass budget of a lake is based on observations of physical variations over a certain period of time: lake volume (level, surface area), lake water temperature, meteorological precipitation, air humidity, wind velocity, input of spring water, and overflow of the lake. This first approach leads to quantification of the input and output fluxes that contribute to the actual crater lake volume. Estimating the input flux of the "volcanic" fluid (Qf - kg/s) –– an unmeasurable subsurface parameter –– and tracing its variations with time is the major focus during crater lake monitoring. Through expanding the mass budget into an isotope and chemical budget of the lake, the box model helps to qualitatively characterize the fluids involved. The (calculated) Cl− content and dD ratio of the rising "volcanic" fluid defines its origin. With reference to continuous monitoring of crater lakes, the present study provides tips that allow better calculation of Qf in the future. At present, this study offers the most comprehensive and up-to-date literature review on active crater lakes.
    Description: Published
    Description: 161-173
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: Geochemical monitoring ; Active crater lakes, ; Box model ; Mass budget ; Isotope and chemical budget ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-09
    Description: Greece has a very complex geodynamic setting deriving from a long and complicat-ed geological history being characterized by intense seismic activity and enhanced geothermal gradient. This activity, with the contribution of an active volcanic arc, favours the existence of many gas manifestations. Depending on the prevailing gas species, the latter can be subdivided in three main groups: CO2-, N2- and CH4-dominated. In the present work, we focus on methane and light hydrocarbons (C2-C6) to define their origin. CH4 concentrations (〈2 to 915,200 μmol/mol) and isotop-ic ratios (δ13C -79.8 to +16.9 ‰, δD -298 to +264‰) cover a wide range of values indicating different origins and/or secondary post-genetic processes. Samples from gas discharged along the Ionian coast and in northern Aegean Sea have a prevail-ing microbial origin. Cold and thermal gas manifestations of central and northern Greece display a prevalent thermogenic origin. Methane in gases released along the active volcanic arc is prevailingly abiogenic, although thermogenic contributions cannot be excluded. Gases collected in the geothermal areas of Sperchios basin and northern Euboea are likely affected by strong secondary oxidation processes, as suggested by their highly positive C and H isotopic values (up to +16.9‰ and +264‰ respectively) and low C1/(C2+C3) ratios.
    Description: Submitted
    Description: Thessaloniki, Greece
    Description: 4V. Vulcani e ambiente
    Description: open
    Keywords: Hellenic territory ; hydrothermal gases ; cold gas emissions ; origin of hydrocarbon gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-09
    Description: In January 2002, Nyiragongo volcano erupted 14–34 × 106 m3 of lava from fractures on its southern flanks. The nearby city of Goma was inundated by two lava flows, which caused substantial socioeconomic disruption and forced the mass exodus of the population, leaving nearly 120,000 people homeless. Field observations showed marked differences between the lava erupted from the northern portion of the fracture system and that later erupted from the southern part. These observations are confirmed by new 238U and 232Th series radioactive disequilibria data, which show the presence of three different phases during the eruption. The lavas first erupted (T1) were probably supplied by a residual magma batch from the lava lake activity during 1994–1995. These lavas were followed by a fresh batch erupted from fissure vents as well as later (May–June 2002) from the central crater (T2). Both lava batches reached the surface via the volcano's central plumbing system, even though a separate flank reservoir may also have been involved in addition to the main reservoir. The final phase (T3) is related to an independent magmatic reservoir located much closer (or even beneath) the city of Goma. Data from the January 2002 eruption, and for similar activity in January 1977, suggest that the eruptive style of the volcano is likely to change in the future, trending toward more common occurrence of flank eruptions. If so, this would pose a significant escalation of volcanic hazards facing Goma and environs, thus requiring the implementation of different volcano-monitoring strategies to better anticipate where and when future eruptions might take place.
    Description: Published
    Description: B09202
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Nyiragongo ; forecasting ; volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-09
    Description: Abstract A geochemical survey of fumarolic and submerged gases from fluid discharges located in the Nea Kameni and Palea Kameni islets (Santorini Island, Greece) was carried out before, during, and after the unrest related to the anomalously high seismic and ground deformation activity that affected this volcanic system since January 2011. Our data show that from May 2011 to February 2012, the Nea Kameni fumaroles showed a significant increase of H2 concentrations. After this period, an abrupt decrease in the H2 contents, accompanied by decreasing seismic events, was recorded. A similar temporal pattern was shown by the F−, Cl−, SO4 2−, and NH4 + concentrations in the fumarolic condensates. During the sharp increase of H2 concentrations, when values up to 158 mmol/ mol were measured, the δ13C–CO2 values, which prior to January 2011 were consistent with a dominant CO2 thermometamorphic source, have shown a significant decrease, suggesting an increase of mantle CO2 contribution. Light hydrocarbons, including CH4, which are controlled by chemical reactions kinetically slower than H2 production from H2O dissociation, displayed a sharp increase in March 2012, under enhanced reducing conditions caused by the high H2 concentrations of May 2011–February 2012. The general increase in light hydrocarbons continued up to July 2012, notwithstanding the contemporaneous H2 decrease. The temporal patterns of CO2 concentrations and N2/Ar ratios increased similarly to that of H2, possibly due to sealing processes in the fumarolic conduits that diminished the contamination related to the entrance of atmospheric gases in the fumarolic conduits. The compositional evolution of the Nea Kameni fumaroles can be explained by a convective heat pulse from depth associated with the seismic activation of the NE–SW-oriented Kameni tectonic lineament, possibly triggered by either injection of new magma below Nea Kameni island, as apparently suggested by the evolution of the seismic and ground deformation activity, or increased permeability of the volcanic plumbing system resulting from the tectonic movements affecting the area. The results of the present study demonstrate that the geophysical and geochemical signals at Santorini are interrelated and may be precursory signals of renewed volcanic activity and encourage the development of interdisciplinary monitoring program to mitigate the volcanic risk in the most tourist-visited island of the Mediterranean Sea.
    Description: Published
    Description: 711
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Santorini Island . ; Fluid geochemistry ; Geochemical monitoring ; Seismic crisis ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-09
    Description: Copahue volcano is part of the Caviahue–Copahue Volcanic Complex (CCVC),which is located in the southwestern sector of the Caviahue volcano-tectonic depression (Argentina–Chile). This depression is a pull-apart basin accommodating stresses between the southern Liquiñe–Ofqui strike slip and the northern Copahue–Antiñir compressive fault systems, in a back-arc setting with respect to the Southern Andean Volcanic Zone. In this study, we present chemical (inorganic and organic) and isotope compositions (δ13C-CO2, δ15N, 3He/4He, 40Ar/36Ar, δ13C-CH4, δD-CH4, and δD-H2O and δ18O-H2O) of fumaroles and bubbling gases of thermal springs located at the foot of Copahue volcano sampled in 2006, 2007 and 2012. Helium isotope ratios, the highest observed for a Southern American volcano (R/Ra up to 7.94), indicate a non-classic arc-like setting, but rather an extensional regime subdued to asthenospheric thinning. δ13C-CO2 values (from −8.8‰ to −6.8‰ vs. V-PDB), δ15N values (+5.3‰ to +5.5‰ vs. Air) and CO2/3He ratios (from 1.4 to 8.8 × 109) suggest that the magmatic source is significantly affected by contamination of subducted sediments. Gases discharged from the northern sector of the CCVC show contribution of 3He-poor fluids likely permeating through local fault systems. Despite the clear mantle isotope signature in the CCVC gases, the acidic gas species have suffered scrubbing processes by a hydrothermal system mainly recharged by meteoric water. Gas geothermometry in the H2O-CO2-CH4-CO-H2 system suggests that CO and H2 re-equilibrate in a separated vapor phase at 200°–220 °C. On the contrary, rock–fluid interactions controlling CO2, CH4 production from Sabatier reaction and C3H8 dehydrogenation seem to occur within the hydrothermal reservoir at temperatures ranging from 250° to 300 °C. Fumarole gases sampled in 2006–2007 show relatively low N2/He and N2/Ar ratios and high R/Ra values with respect to those measured in 2012. Such compositional and isotope variations were likely related to injection of mafic magma that likely triggered the 2000 eruption. Therefore, changes affecting the magmatic systemhad a delayed effect on the chemistry of the CCVC gases due to the presence of the hydrothermal reservoir. However, geochemical monitoring activities mainly focused on the behavior of inert gas compounds (N2 and He), should be increased to investigate the mechanism at the origin of the unrest started in 2011.
    Description: Published
    Description: 44–56
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Fluid geochemistry ; Copahue volcano ; Fumarolic fluid ; Hydrothermal reservoir ; Volcanic unrest ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-09
    Description: Measurements of soil fluxes of hydrothermal gases, with special emphasis on C6H6, as well as chemical composition of mono-aromatic compounds in fumaroles and air, were carried out in April 2012 at the Solfatara crater (Campi Flegrei, Southern Italy) to investigate the distribution and behavior of these species as they migrate through the soil from their deep source to the atmosphere. Soil fluxes of CO2, CH4 and C6H6 exhibit good spatial correlation, suggesting that diffuse degassing is mainly controlled by local fractures. The calculated total output of diffuse C6H6 from Solfatara is 0.10 kg day 1, whereas fluxes of CO2 and CH4 are 79 103 and 1.04 kg day 1, respectively. A comparison between soil gas fluxes and fumarole composition reveals that within the crater soil CH4 is significantly affected by oxidation processes, which are more efficient for low gas fluxes, being dependent on the residence time of the uprising hydrothermal gases at shallow depth. Benzene degradation, mainly proceeding through oxidation via benzoate, seems to be strongly controlled by the presence of a shallow SO2 4 -rich aquifer located in the central and southwestern sectors of the crater, suggesting that the process is particularly efficient when SO2 4 acts as terminal electron acceptor (SO4 reduction). Relatively high C6H6/C7H8 ratios, typical of hydrothermal fluids, were measured in air close to the main fumarolic field of Solfatara crater. Here, C6H6 concentrations, whose detection limit is 0.1 lgm 3, are more than one order of magnitude higher than the limit value for ambient air (5 lgm 3). This suggests that hydrothermal fluids have a strong impact on air quality in the immediate surroundings of the fumarolic vents. Significant concentrations of endogenous mono-aromatics were also detected in air samples collected from the northern and western sides of the crater, where these gas compounds are mostly fed by diffuse degassing through the crater bottom soil.
    Description: Published
    Description: 142–153
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: hydrothermal gases ; Solfatara crater ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-09
    Description: Lake Albano (Alban Hills volcanic complex, Central Italy) is located in a densely populated area near Rome. The deep lake waters have significant dissolved CO2 concentrations, probably related to sub-lacustrine fluid discharges fed by a pressurized CO2-rich reservoir. The analytical results of geochemical surveys carried out in 1989 2010 highlight the episodes of CO2 removal from the lake. The total mass of dissolved CO2 decreased from ∼5.8× 107 kg in 1989 to ∼0.5×107 kg in 2010, following an exponential decreasing trend. Calculated values of both dissolved inorganic carbon and CO2 concentrations along the vertical profile of the lake indicate that this decrease is caused by CO2 release from the epilimnion, at depth 〈9 m, combined with (1) water circulation at depth 〈95 m and (2) CO2 diffusion from the deeper lake layers. According to this model, Lake Albano was affected by a large CO2 input that coincided with the last important seismic swarm at Alban Hills in 1989, suggesting an intimate relationship between the addition of deep-originated CO2 to the lake and seismic activity. In the case of a CO2 degassing event of an order of magnitude larger than the one that occurred in 1989, the deepest part of Lake Albano would become CO2-saturated, resulting in conditions compatible with the occurrence of a gas outburst. These results reinforce the idea that a sudden CO2 input into the lake may cause the release of a dense gas cloud, presently representing the major volcanic threat for this densely populated area
    Description: Published
    Description: 861-871
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Crater lakes ; Limnic eruption ; CO2 outburst ; Lake Albano ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-09
    Description: The Cerro Blanco Caldera (CBC) is the youngest collapse caldera system in the Southern Central Andes (Southern Puna, Argentina). The CBC is subsiding with at an average velocity of 0.87 cm/year and hosts an active geothermal system. A geochemical characterization of emitted fluids was carried out based on the chemical and isotopic compositions of fumaroles, and thermal and cold springs discharged in this volcanic area with the aim of constructing the first hydrogeochemical conceptual model and preliminary estimate the geothermal potential. The main hydrothermal reservoir, likely hosted within the pre-caldera basement rocks, has a Na+-Clˉ(HCO3)ˉ composition with estimated temperatures ≥135 °C. The unconsolidated, fine-grained Cerro Blanco ignimbrite likely acts as the cap-rock of the hydrothermal system. The presence of phreatic eruption breccias in the surrounding area of the geothermal fumaroles supports the effectiveness of the pyroclastic deposit as sealing rocks. The isotopic data of water (δ18O and δD) indicate a meteoric recharge of the hydrothermal reservoir, suggesting as recharge areas the sectors surrounding the CBC, mainly towards the W and NW where large outcrops of the pre-caldera basement exist. A fault-controlled hydraulic connection between the hot springs and the hydrothermal reservoir is proposed for the Los Hornitos area. The fumaroles show the typical compositional features of hydrothermal fluids, being dominated by water vapor with significant concentrations of H2S, CH4 and H2. Considering the high geothermal gradient of this area (∼104 °C/km) and the relatively high fraction of mantle He (∼39%) calculated on the basis of the measured R/Ra values, the hydrothermal aquifer likely receives inputs of magmatic fluids from the degassing magma chamber. The preliminary geothermal potential at CBC was evaluated with the Volume Method, calculating up to E = 11.4*1018 J. Both the scarce presence of superficial thermal manifestations and the occurrence of an efficient cap-rock likely contribute to minimize the loss of thermal energy from the reservoir. The results here presented constitute the necessary base of knowledge for further accurate assessment of the geothermal potential and ultimately the implementation of the geothermal resource as a viable energy alternative for small localities or mining facilities isolated from the National Interconnected System due to their remote localization.
    Description: Published
    Description: 102213
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Hydrothermal system ; Fluid geochemistry ; Geothermal prospection ; Quaternary caldera ; Northwestern Argentina ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-09
    Description: Nisyros Island (Greece) is an active volcano hosting a high-enthalpy geothermal system. During June 2013, an extensive survey on Hg concentrations in different matrices (fumarolic fluids, atmosphere, soils and plants) was carried out at Lakki Plain, an intra-caldera area affected by widespread soil and fumarolic degassing. Concentrations of gaseous elemental mercury (GEM), H2S and CO2, were simultaneously measured in both the fumarolic emissions and the atmosphere around them. At the same time, 130 samples of top soils and 31 samples of plants (Cistus Creticus and Salvifolius and Erica Arborea and Manipuliflora) were collected for Hg analysis. Mercury concentrations in fumarolic gases ranged from 10,500 to 46,300 ng/m3, while Hg concentrations in the air ranged from high background values in the Lakki Plain caldera (10-36 ng/m3) up to 7100 ng/m3 in the fumarolic areas. Outside the caldera, the concentrations were relatively low (2-5 ng/m3). The positive correlation with both CO2 and H2S in air highlighted the importance of hydrothermal gases as carrier for GEM. On the other hand, soil Hg concentrations (0.023-13.7 µg/g) showed no significant correlations with CO2 and H2S in the soil gases, whereas it showed a positive correlation with total S content and an inverse one with the soil-pH, evidencing the complexity of the processes involving Hg carried by hydrothermal gases while passing through the soil. Total Hg concentrations in plant leaves (0.010-0.112 μg/g) had no direct correlation with soil Hg, with Cistus leaves containing higher values of Hg respect to Erica. Even though GEM concentrations in air within the caldera are sometimes orders of magnitude above the global background, they should not be considered dangerous to human health. Values exceeding the WHO guideline value of 1000 ng/m3 are very rare (〈0.1%) and only found very close to the main fumarolic vents, where the access to tourists is prohibited.
    Description: Published
    Description: ID 4783514
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Fumarolic mercury ; Atmospheric mercury ; Soil mercury ; Plant mercury ; Mercury output ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...