ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000
    Keywords: Strong motions ; noksp ; JOSE
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000
    Keywords: Strong motions ; Site amplification ; hard ; rock ; Fault zone ; noksp ; JOSE
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Geophys. J. Int., Leipzig, Birkhäuser Verlag, vol. 143, no. 3, pp. 521-544, pp. L09309, (ISBN: 0-12-018847-3)
    Publication Date: 2000
    Keywords: Source ; Polarization ; Shear waves ; Strong motions ; Earthquake ; GJI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-07
    Description: The rapid urban development in Istanbul has lead to an increase in the exposure levels of the urban vulnerability. Due to the steadily increasing population, with improper land-use planning, inappropriate construction techniques and inadequate infrastructure systems, associated with an existing high hazard level, Istanbul is one of the most risky cities in the Mediterranean region. Estimations of casualties and losses, expected for given earthquake scenarios, are necessary to develop sustainable rehabilitation programs and for improving preparedness. Deterministic hazard scenarios and time-dependent probabilistic hazard assessment were used as input to a GIS-based loss estimation model, to evaluate the earthquake risk for Istanbul. The deterministic ground shaking scenarios, used for loss estimation in Istanbul, were defined in terms of acceleration and velocity time series for recognized reference earthquakes caused by different rupture models along extended sources. The ground motions were calculated for the whole metropolitan area extending over a grid system of 25×100 km2. For the case of Istanbul, the representative scenario was selected by comparing the simulated peak values and response spectra with the empirical ground motion models available for the area. Simulated values are within one standard deviation of the empirical regressions. The availability of wide-ranging building inventory data allowed the application of a GIS-based loss estimation model (KoeriLoss-V2) to evaluate different loss scenarios depending on the ground shaking input, as well as to consider the implications of mitigation actions. It was found that 30% of the buildings in the metropolitan area may be in need of either strengthening or demolition to achieve an adequate degree of life safety.
    Description: Published
    Description: 699-709
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Loss estimation ; Deterministic ground shaking scenarios ; Istanbul area ; Marmara Sea region ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The city of Palermo (southern Italy) was severely damaged in the past by moderate-magnitude earthquakes located tens of kilometres offshore. The historical monumental heritage and the high density of population motivated large efforts for the seismic risk assessment. We present the geological and seismological studies performed in downtown Palermo as a study case to show how the complexity of an urban environment can be approached with multidisciplinary investigations. Downtown Palermo is characterized by sea deposits in the coastal zone and the alluvial deposits of two rivers (Papireto and Kemonia) of about 150 m width, which were buried and filled during the XVII century. The difficulty of surface geological surveys was compensated through an analysis of aerial photos and more than 2000 borehole data organized in the City-GIS of the Department of Geology and Geodesy of the University of Palermo. A previous study on the well-documented historical damage indicated the major role played by the two river valleys and the sea deposits in controlling the damage distribution, above the assumption of a fairly homogeneous vulnerability of the existing buildings in downtown. To test the feasibility of using ambient noise for recognizing the presence of alluvial deposits in a densely urbanized environment, a large microtremor measurement campaign was performed in Palermo across several profiles. The frequency peaks inferred from the horizontal-to-vertical spectral ratio were compared with numerical simulations to assess the seismic velocity profile and the soil stratigraphy. Moreover, noise data were analyzed through a statistical approach to establish a possible correlation between damage, resonance frequency and amplitude, and geology. After the moderate earthquake of September 6, 2002 (Mw=5.9, 50 km far away), the analysis of the aftershock sequence provided a well documented estimate of the variation of ground motion within the city in the case of linear soil response. Using these aftershocks we computed also synthetic accelerograms of the main shock through Empirical Green’s Functions that provided ground accelerations as large as 50 gals, consistently with the documented EMS-98 intensity. Synthetic accelerograms showed a large variability of horizontal ground motion within the city (a factor of 3 – 4) that confirms the role of local geology in causing an increase of the seismic hazard on sea and alluvial deposits. Finally, we discuss the comparison between the acceleration response spectra calculated for different soil categories and the design elastic spectra provided by EC8.
    Description: Unpublished
    Description: Lisbon, Portugal
    Description: open
    Keywords: microtremors ; numerical simulations ; earthquake recordings ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Format: 1611310 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-02-03
    Description: The overall aim of Sub-Project 10 (Earthquake disaster scenario predictions and loss modelling for urban areas) has been to create a tool, based on state-of-the-art loss modelling software, to provide strong, quantified statements about the benefits of a range of possible mitigation actions, in order to support decision-making by urban authorities for seismic risk mitigation strategies. A further larger aim has been to contribute to a seismic risk mitigation policy for future implementation at European level. Among the European cities for which loss estimation studies have been carried out are Istanbul, Lisbon and Thessaloniki, and tools, using GIS mapping, have been developed by research teams in each of these cities; these were made available for further development to examine mitigation strategies within SP10. Related research studies – on ground motion estimation, on the assessment of human casualties, and on the evaluation of uncertainty have been carried out by other research teams across Europe which includes INGV, UCAM and USUR respectively. In all three of the cities, a common general approach to loss modelling has been adopted which includes representing the earthquake hazard as a set of alternative ground motion scenarios (typically those with an expected recurrence periods of 50 and 500 years), and applying the ground motion over a target area of known population and building stock. Losses have then been estimated for this target area in terms of levels of building damage and human casualties expected both in the existing state of the target area, and after certain selected potential mitigation actions have been carried out. This has been done in each case using building stock classifications and vulnerability data specific to the particular city concerned. In each case the scope of the proposed mitigation action has been described, and its expected benefit in terms of reduced losses and human casualties has been determined with some preliminary assessment of uncertainty.
    Description: LessLoss - Risk Mitigation for Earthquakes and Landslides, SP10 "Earthquake Scenarios, Loss Modelling and Mitigation for Urban Areas" (coord. R.Spence). EC Project -Sixth Framework Programme. Priority 1.1.6.3 - Global Change and Ecosystems, Project No.:GOCE-CT-2003-505488
    Description: Published
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: open
    Keywords: shaking scenarios ; Istanbul ; Lisbon ; Thessaloniki ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We propose a method to introduce a refined representation of the ground motion in the framework of the Probabilistic Seismic Hazard Analysis (PSHA). This study is especially oriented to the incorporation of a priori information about source parameters, by focusing on the directivity effect and its influence on seismic hazard maps. Two strategies have been followed. One considers the seismic source as an extended source, and it is valid when the PSHA seismogenetic sources are represented as fault segments. We show that the incorporation of variables related to the directivity effect can lead to variations up to 30% of the hazard level, in terms of spectral acceleration response at 5 sec., exceeding probability of 10% in 50 years. The second one concerns the more general problem of the seismogenetic areas, where each point is a seismogenetic source having the same chance of enucleate a seismic event. In our proposition the point source is associated to the rupture-related parameters, defined using a statistical description. As an example, we consider a source point of an area characterized by strike slip faulting style. With the introduction of the directivity correction the modulation of the hazard map reaches values up to 100%. The introduction of directivity does not increase uniformly the hazard level, but acts more like a redistribution of the estimation that is consistent with the fault orientation. A general increase appears only when no a-priori information is available. However, nowadays good a-priori knowledge exists on style of faulting, dip and orientation of faults associated to the majority of the seismogenetic zones of the present seismic hazard maps. Following this method, all the information collected may be easily converted to obtain a more comprehensive and meaningful probabilistic Seismic Hazard formulation.
    Description: Published
    Description: 616-626
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquake ground motion ; Earthquake source observation ; Probabilistic Seismic Hazard ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-04
    Description: In this paper we report the results of several investigations aimed at evaluating ground motion scenarios for the September 26th, 1997 Colfiorito earthquake (Mw 6.0, 09:40 UTC). We model the observed variability of ground motions through synthetic scenarios which simulate an earthquake rupture propagating at constant rupture velocity (2.7 km/s) and the inferred directivity. We discuss the variability of kinematic source parameters, such as the nucleation position and the rupture velocity, and how it influences the predicted ground motions and it does not account for the total standard deviation of the empirical predictive model valid for the region. Finally, we used the results from the scenario studies for the Colfiorito earthquake to integrate the probabilistic and deterministic approaches for seismic hazard assessment.
    Description: GNDT 2000-2003 S3 Project, DPC-INGV 2004-2006
    Description: Published
    Description: 509-525
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: JCR Journal
    Description: open
    Keywords: ground motion scenario ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: In this paper earthquake damage scenarios for residential buildings (about 4200 units) in Potenza (Southern Italy) have been estimated adopting a novel probabilistic approach that involves complex source models, site effects, building vulnerability assessment and damage estimation through Damage Probability Matrices. Several causative faults of single seismic events, with magnitude up to 7, are known to be close to the town. A seismic hazard approach based on finite faults ground motion simulation techniques has been used to identify the sources producing the maximum expected ground motion at Potenza and to generate a set of ground motion time histories to be adopted for building damage scenarios. Additionally, site effects, evaluated in a previouswork through amplification factors of Housner intensity, have been combined with the bedrock values provided by hazard assessment. Furthermore, a new relationship between Housner and EMS-98 macroseismic intensity has been developed. This relationship has been used to convert the probability mass functions of Housner intensity obtained from synthetic seismograms amplified by the site effects coefficients into probability mass function of EMS-98 intensity. Finally, the Damage Probability Matrices have been applied to estimate the damage levels of the residential buildings located in the urban area of Potenza. The proposed methodology returns the full probabilistic distribution of expected damage, thus avoiding average damage index or uncertainties expressed in term of dispersion indexes.
    Description: Published
    Description: 517-545
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: bulding damage ; ground motion simulation ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: On May 20, 2012, at 02:03 UTC, a ML 5.9 reverse-fault earthquake occurred in the Emilia-Romagna region, northern Italy, at a hypocentral depth of 6.3 km (http://iside.rm. ingv.it/), close to the cities of Modena and Ferrara in the plain of the Po River. The epicenter was near the village of Finale Emilia where macroseismic intensity was assessed at 7 EMS98 [Tertulliani et al. 2012, this issue], while the closest accelerometric station, MRN, located less than 20 km west-ward at Mirandola (Figure 1) recorded peaks of ground accelerations of about 300 cm/s2 (www.protezionecivile.gov.it/resources/ cms/documents/Report_DPC_1_Emilia_EQSd.pdf ). The mainshock triggered liquefaction phenomena a few kilometers eastwards of the epicenter, around the village of San Carlo. On the same day, two other shocks of ML 5.1 followed (02:07, 13:18 GMT; http://iside.rm.ingv.it/). On May 29, 2012, at 07:00 UTC another ML 5.8 earthquake hit the region (http://iside.rm.ingv.it/), with the epicenter close to the village of Mirandola (Figure 1). Three other strong aftershocks occurred afterwards, of ML 5.3 (May 29, at 10:55), ML 5.2 (May 29, at 11:00) and ML 5.1 ( June 3, at 19:20). For a detailed description of the seismic sequence, see Moretti et al. [2012], Scognamiglio et al. [2012], and Massa et al. [2012], in this issue. The Emilia seismic sequence resulted in 25 casualties, several of whom were among the workers in the many factories that collapsed during working hours, and there was extensive damage to monuments, public buildings, industrial sites, and private homes. The Po Plain region that was struck by the 2012 Emilia seismic sequence is a very large E-W trending syntectonic alluvial basin, which covers about 45,000 km2. It is surrounded by the Alps to the north and the Apennines to the south, and it is filled with Plio-Pleistocene terrigenous sediments and Holocene deposits, with depths varying from a few hundred meters up to several kilometers. The epicentral area was located south of the Po River, corresponding to the active front of the northern Apennines thrust belt (north-vergence), which is composed of buried folds and thrust faults that locally produce structural highs (Figure 1), and are known as Pieghe Emiliane and Ferraresi [Pieri and Groppi 1981]. The top of this limestone and marl bedrock rises to ca. 100 m from the surface and has been derived locally from borehole logs. The seismic response of this ca. 150-m-deep soft cover was investigated using weak-motion events and microtremors recorded in a borehole by Margheriti et al. [2000]. The occurrence of the May 2012 seismic sequence made it possible to study the seismic response under near-field conditions. These studies are aimed at providing tools to reduce the impact of future earthquakes on the local communities. In addition to the amplification due to one-dimensional (1D) resonance, it is well known that seismic responses of deep sedimentary basins are affected by 2D and 3D effects (e.g., wave diffraction, conversion at the basin edges, trapping and focusing of energy within the soil volume). Evidence of basin-induced surface waves and edge effects have been observed in many basins worldwide; e.g., the Osaka basin in Japan [e.g., Kawase 1996, Pitarka et al. 1998], various southern California basins [Graves et al. 1998, Day et al. 2008], and the Parkway basin in New Zealand [Chávez-García et al. 1999]. In Italy, good examples of site amplification in alluvial basins can be found for the Gubbio, Città di Castello, L'Aquila and Fucino basins [ Bordoni et al. 2003, Bindi et al. 2009, Cara et al. 2011, Milana et al. 2011]. Therefore, the day after the mainshock, the INGV rapidresponse network for site effects, called EMERSITO, planned the experiments presented in this report. EMERSITO put together independent research groups from several territorial centers of the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology) who agree to collaborate spontaneously and on the basis of a data archiving and sharing policy. They then deployed their seismic equipment in the epicentral area, building on the experience of the 2009 L'Aquila earthquake [Di Giulio et al. 2011, Margheriti et al. 2011, Milana et al. 2011]. The deployment was planned also in collaboration with the geological survey of the Regione Emilia Romagna (Servizio Geologico e Sismico e dei Suoli) and the University of Modena, as well as being in the framework of SISMIKO [Moretti et al. 2012]. As a result of this effort, since May 22, three linear arrays have been deployed (Figure 1), with a total of 22 sites instrumented, 16 of them equipped with both velocimeters and accelerometers. These arrays recorded most of the aftershock sequence, including the MW 5.8 May 29, 2012, 07:00 earthquake. The continuous recordings will be archived into the EIDA database (http://eida.rm.ingv.it/) under restricted access. The aim of this report is to describe the experiments performed by the EMERSITO team, as well as the main features of the recorded earthquakes. A preliminary insight in the site response of the investigated area within the context of the geological structure of the Po Plain is also given.
    Description: Published
    Description: 599-607
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Spectral ratios ; Emilia 2012 earthquake ; Rapid response seismic network ; Site effect ; Seismic array ; Strong motions ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...