ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring  (8)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous  (3)
  • Earthquake catalog
  • TF III
  • ddc:550
  • 1
    facet.materialart.
    Unknown
    In:  Phys. Earth Plan. Int., Stockholm, Wissenschaftliche Buchgesellschaft, vol. 130, no. 1-2, pp. 71-101, pp. L15318, (ISSN: 1340-4202)
    Publication Date: 2002
    Keywords: Earthquake catalog ; Moment tensor ; Fault plane solution, focal mechanism ; PEPI ; Ekstroem ; Ekstrom ; Dziewonski
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006
    Keywords: TF III ; Task Force III ; Lithosphere-Astenosphere Interactions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006
    Keywords: TF III ; Task Force III ; Lithosphere-Astenosphere Interactions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006
    Keywords: TF III ; Task Force III ; Lithosphere-Astenosphere Interactions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-20
    Description: Alle ore 02.03 UTC di domenica 20 maggio 2012, la Rete Sismica Nazionale (RSN [Amato and Mele, 2008; Delladio, 2011]) dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV) ha registrato un evento simico di magnitudo locale 5.9 che è stato avvertito in gran parte dell’Italia centro-settentrionale; l’evento è stato localizzato sotto la valle del Po in Emilia (44.89° N, 11.23° E e 6.3 km di profondità). Subito dopo la scossa principale, è stato attivato il Pronto Intervento Sismico dell’INGV al fine di installare una rete sismica temporanea ad integrazione delle stazioni permanenti già presenti in area epicentrale. Grazie alla collaborazione fra le sedi INGV di Ancona, Arezzo, Bologna, Irpinia (Grottaminarda), Milano, Pisa e Roma sono state installate 44 stazioni temporanee, di cui 10 in trasmissione real-time con la sala di sorveglianza simica della sede di Roma. Contemporaneamente altre 38 stazioni sismiche temporanee sono state inoltre installate dal Dipartimento della Protezione Civile – DPC (16 stazioni strong motion), dall’Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS (8 stazioni stand-alone) e da enti francesi (14 stazioni stand-alone). In una seconda fase, l’8 giugno 2012, è stato attivato anche il Centro Operativo Emergenza Sismica (COES [Moretti et al., 2010a]), all’interno della Direzione di Comando e Controllo (Di.Coma.C.) del DPC predisposto presso l’Agenzia della Protezione Civile Regionale dell’Emilia Romagna (Bologna). L’allestimento e il coordinamento della struttura sono stati realizzati grazie alla collaborazione tra il Centro Nazionale Terremoti (CNT) e la Sezione di Bologna. Il COES ha garantito la comunicazione costante e diretta con i funzionari DPC presenti nell'area epicentrale. Allo stesso tempo, la struttura è stata proposta come supporto logistico per tutti i colleghi dell’INGV impegnati in attività nella zona epicentrale (reti sismiche Mobili, EMERSITO, GPS, EMERGEO, QUEST) e per sostenere il servizio dedicato alla “Comunicazione e Informazione” promosso a favore delle popolazioni colpite, degli operatori della protezione civile e dei volontari di soccorso. In questo lavoro saranno descritte le attività svolte nel primo mese di emergenza, le modalità e le tempistiche dell’intervento, le strutture coinvolte.
    Description: Published
    Description: 1-43
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: N/A or not JCR
    Description: open
    Keywords: Emilia 2012 sequence ; Seismic networks ; Seismological data ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-18
    Description: no abstract
    Description: Published
    Description: 615-621
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source ; Wave analysis ; Seismic moment tensor ; Data processing ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-20
    Description: The project Retreating-trench, extension, and accretion tectonics, RETREAT, is a multidisciplinary study of the Northern Apennines (earth.geology.yale.edu/RETREAT/), funded by the United States National Science Foundation (NSF) in collaboration with the Italian Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Grant Agency of the Czech Academy of Sciences (GAAV). The main goal of RETREAT is to develop a self-consistent dynamic model of syn-convergent extension, using the Northern Apennines as a natural laboratory. In the context of this project a passive seismological experiment was deployed in the fall of 2003 for a period of three years. RETREAT seismologists aim to develop a comprehensive understanding of the deep structure beneath the Northern Apennines, with particular attention on inferring likely patterns of mantle flow. Specific objectives of the project are the crustal and lithospheric thicknesses, the location and geometry of the Adriatic slab, and the distribution of seismic anisotropy laterally and vertically in the lithosphere and asthenosphere. The project is collecting teleseismic and regional earthquake data for 3 years. This contribution describes the RETREAT seismic deployment and reports on key results from the first year of the deployment. We confirm some prior findings regarding the seismic structure of Central Italy, but our observations also highlight the complexity of the Northern Apennines subduction system.
    Description: JCR Journal
    Description: open
    Keywords: temporary seismological network ; subduction geometry ; upper mantle fabric ; seismic anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 4184318 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Questa nota presenta una sintesi delle attività svolte durante il rilievomacrosismico del terremoto avvenuto tra le province di Parma e Reggio Emilia il 23 dicembre 2008. La scossa di Ml 5.2 è stata localizzata a sud di Parma ed è stata avvertita in tutta l’Italia settentrionale e in gran parte della Liguria e della Toscana. Il presente rapporto illustra lemodalità di intervento del teamQUEST, relative al rilievo degli effetti e alla valutazione in intensità MCS in particolare per le località della zona epicentrale. L’ampia documentazione fotografica illustra alcuni dettagli delle tipologie di danneggiamento rilevate e consente di comprendere meglio le valutazioni dell’intensità macrosismica. This paper presents an overview of the activities performed during the macroseismic field survey of the earthquake that occurred in the Parma and Reggio Emilia region on December 23, 2008. The mainshock (Ml=5.2), was located south of the city of Parma and was resolutely felt through Northern Italy. The report here presented shows the procedures carried out by QUEST (Quick Earthquake Survey Team), concerning the survey. QUEST has been engaged in gathering the damage information and in assessing the macroseismic intensity, in particular about the epicentral area. A copious photo collection shows details of the observed damage nature and allows to better illustrate the intensity
    Description: Published
    Description: 1-41
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: N/A or not JCR
    Description: open
    Keywords: rilievo macrosismico ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The Montello–Conegliano Thrust is the most remarkable structure of the Southern Alpine fault belt in the Veneto-Friuli plain, as a result of the conspicuous morphological evidence of the Montello anticline, which is associated to uplifted and deformed river terraces, diversion of the course of the Piave River, as well as vertical relative motions registered by leveling lines (Galadini et al., 2005; Burrato et al., 2008). Many papers dealt with its geometry and evolution, and the presence of several orders of Middle and Upper Pleistocene warped river terraces (Benedetti et al., 2000) in the western sector strongly suggests that the Montello–Conegliano anticline is active and driven by the underlying thrust. However, in spite of the spectacular geomorphic and geologic evidence of activity of the Montello-Conegliano Thrust, there is only little evidence on how much contractional strain is released through discrete events (i.e. earthquakes) and how much goes aseismic. Benedetti et al. (2000) hypothesized that the western part of the thrust (Montello) may have slipped three times in the past 2000 years (during the Mw 5.8 778 A.D., Mw 5.4 1268 and Mw 5.0 1859 earthquakes), yielding a mean recurrence time of about 500 years, whereas, the eastern part of the thrust (Conegliano) would be silent. The Italian seismic catalogues have very poor-quality and incomplete data for these events associated with the Montello thrust, leaving room for different interpretations, as for example the possibility that these earthquakes were generated by nearby secondary structures. In this latter case, the whole Montello–Conegliano Thrust would represent a major “silent” structure, with a recurrence interval longer than 700 years, because none of the historical earthquakes reported in the Italian Catalogues of seismicity for the past seven centuries can be convincingly referred to the Montello Source. Given the uncertainties regarding the seismic potential of this segment of the Southern Alpine fault system, we designed and realized a new GPS network across the Montello region (Fig. 1), with the goal of detecting the present-day velocity gradient pattern and develop models of the inter-seismic deformation (i.e., geometry, kinematics and coupling of the seismogenic fault). In the 2009, we started realizing a new concept of GPS experiment, called “semi-continuous”. As the name suggests, the method involves moving a set of GPS receivers around a permanently installed network of monuments, such that each station is observed some fraction of the time. In practice, a set of GPS receivers can literally remain in the field for their entire life span, thus maximizing their usage. The monuments are designed with special mounts so that the GPS antenna is forced to the same physical location at each site. This has the advantage of mitigating errors (including possible blunders) in measuring the antenna height and in centering the antenna horizontally. This also has the advantage of reducing variation in multipath bias from one occupation session to another. The period of each “session” depends on the design of the operations. At one extreme, some stations might act essentially as permanent stations (though the equipment is still highly mobile), thus providing a level of reference frame stability, and some stations may only be occupied every year or two, in order to extend or increase the density of a network’s spatial coverage. In this work we will present the motivations and tools used to develop and implement the new GPS network. During the 2010 we will integrate the existing GPS network with 10 mobile seismic stations, belonging to the INGV mobile network, with the goal of illuminate local micro-seismicity patterns that would help constraining the locked fault geometry.
    Description: Published
    Description: trieste, italy
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: conegliano-montello faults ; semi-continuous gps ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We present an updated present-day stress data compilation for the Italian region and discuss it with respect to the geodynamic setting and the seismicity of the area. We collected and analyzed 190 new stress data from borehole breakouts, seismicity, and active faults and checked in detail the previous compilation [Montone et al., 1999]. Our improved data set consists of 542 data, 362 of which with a reliable quality for stress maps. The Italian region is well sampled, allowing the computation of constrained smoothed stress maps; for surrounding regions we added the World Stress Map 2003 release data. These maps depict the active stress conditions and, in the areas where the data are sparse, contribute to understand the relationship between active stress, past tectonic setting, and the seismicity of the study region. The new data are particularly representative along the northern Apennine front, from the Po Plain to offshore the Adriatic, and along the southern Tyrrhenian Sea, north of Sicily, where they point out a compressive tectonic regime. In the Alps both compressive and transcurrent regimes are observed. Our data also confirm that the whole Apenninic belt and the Calabrian arc are extending. Along the central Adriatic coast, changes from one stress regime to another are shown by abrupt variations in the minimum horizontal stress directions. Other gentler stress rotations, as, for instance, from the southern Apennines to the Calabrian arc or along the northern Apennines, follow the curvature of the arcs and are not associated to a stress regime variation.
    Description: Published
    Description: (B10410)
    Description: partially_open
    Keywords: active stress ; earthquakes ; borehole breakouts ; crust and lithosphere ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3452579 bytes
    Format: 711 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...