ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology  (7)
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (5)
  • Basalt  (2)
  • Chlorsulfuron
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 2 (1989), S. 65-69 
    ISSN: 1432-2145
    Keywords: Herbicide tolerance ; Pollen selection ; Sulfonylurea ; Chlorsulfuron
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Maize pollen was exposed to the herbicide Chlorsulfuron (CS), and segregation for tolerance was observed. The resulting plant generation exhibited significantly greater tolerance to CS than other (control) progeny. Since the increase in tolerance occurred after only one generation of pollen exposure, this result demonstrates that pollen selection can be used to develop herbicide-resistant crop species, even when the species are not amenable to cell culture. It also suggests a possible mechanism for the rapid evolution of herbicide tolerance in weeds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-14
    Description: Stromboli volcano is famous in the scientific literature for its persistent state of activity, which began about 1500 years ago and consists of continuous degassing and mild intermittent explosions (normal Strombolian activity). Rare lava emissions and sporadic more violent explosive episodes (paroxysms) also occur. Since its formation, the present-day activity has been dominated by the emission of two basaltic magmas, differing chiefly in their crystal and volatile contents, whose characteristics have remained constant until now. The normal Strombolian activity and lava effusions are fed by a crystal-rich, degassed magma, stored within the uppermost part of the plumbing system, whereas highly vesicular, crystal-poor light-colored pumices are produced during paroxysms testifying to the ascent of volatile-rich magma batches from deeper portions of the magmatic system. Mineralogical, geochemical, and isotopic data, together with data on the volatile contents of magmas, are presented here with the aim of discussing (1) the relationships between the different magma batches erupted at Stromboli, (2) the mechanisms of their crystallization and transfer, (3) the plumbing system and triggering mechanisms of Strombolian eruptions.
    Description: Unpublished
    Description: 20
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: Stromboli volcano ; Basaltic explosive activity ; Basaltic pumice ; Plumbing system ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Intrusive degassing and recycling of degassed and dense magma at depth have been proposed for a long time at Stromboli. The brief explosive event that occurred at the summit craters on 9 January 2005 threw out bombs and lapilli that could be good candidates to illustrate recycling of shallow degassed magma at depth. We present an extensive data set on both the textures and the mineral, bulk rock and glassy matrix chemistry of the “9 Jan” products. The latter have the common shoshonitic–basaltic bulk composition of lavas and scoriae issued from typical strombolian activity. In contrast they differ by the heterogeneous chemistry of their matrix glasses and their crystal textures that testify to crystal dissolution event(s) just prior magma crystallization upon ascent and eruption. Comparison between mineral paragenesis of the natural products and experimental phase equilibria suggest water-induced magma re-equilibration. We propose that mineral dissolution is related to water enrichment of the recycled degassed magma, via differential gas bubble transfer and to some extents its physical mixing with volatile-rich magma blobs. However, all these features illustrate transient processes. Even though evidence of mineral dissolution is ubiquitous at Stromboli, its effect on the bulk magma chemistry is minor because of the subtle interplay between mineral dissolution and crystallization in magmas having comparable bulk chemistry.
    Description: Published
    Description: 325-336
    Description: JCR Journal
    Description: reserved
    Keywords: mineral dissolution ; magma chemistry ; volatiles ; trace elements ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We describe the mineralogy, geochemistry, and mesomicrostructure of fresh subvolcanic blocks erupted during the 5 April 2003 paroxysm of Stromboli (Aeolian Islands, Italy). These blocks represent ∼50 vol.% of the total erupted ejecta and consist of fine- to medium-grained basaltic lithotypes ranging from relatively homogeneous dolerites to strongly or poorly welded magmatic breccias. The breccia components are represented by angular fragments of dolerites entrapped in a matrix of vesiculated (lava-like to scoriae) crystal-rich (CR) basalt. All of the studied blocks are cognates with the CR basalt of the normal Strombolian activity or lavas and they are often coated by a few-centimeter thick layer of crystal-poor (CP) basaltic pumice erupted during the paroxysm. We suggest that they result from the rapid increase of pressure and related subvolcanic rock failure that occurred shortly before the 5 April 2003 explosion, when the uppermost portion of the edifice inflated and suffered brecciation as the result of the sudden rise of the gas-rich CP basalt that triggered the eruption. Dolerites and magmatic matrix of the breccias show major and trace element compositions that match those of the CR basalts erupted during normal Strombolian activity and effusive events at Stromboli volcano. Dolerites consist of (a) phenocrysts normally found in the CR basalts and (b) late-stage magmatic minerals such as sanidine, An60-28 plagioclase, Fe–Mn-rich olivines (Fo68-48), phlogopite, apatite, and opaque mineral pairs (magnetite and ilmenite), most of which are never found both in lava flows and scoriae erupted during the persistent explosive activity that characterizes typical Strombolian behavior. Subvolcanic crystallization of the Stromboli CR magma, leading to slowly cooled equivalents of basalts, could result from transient drainage of the magma from the summit craters to lower levels. Fingering and engulfing of the material that collapsed from the summit crater floor into the shallow basaltic system during the late evening of 28 December 2002 coupled with the short break in the summit persistent explosions between December 2002 and March 2003 permitted the CR magma pockets to solidify as dolerites, which were confined to the uppermost portion of the system and thus not involved in the ongoing flank effusive activity. Crystal size distribution of the basaltic blocks and crystallization of the finer-grained (〈0.1 mm) mafic minerals of the dolerites over a time interval of ∼100 days closely agrees with the above interpretation. Vesicle filling (miarolitic cavities) locally found in some dolerites, with minerals deposited as vapor-phase crystallization is a result of continuous gas percolation through the rocks of the uppermost portion of the volcanic system. Poorly welded magmatic breccias formed during syn-eruptive processes of 5 April 2003, when the paroxysm strongly shattered the shallow subvolcanic system and many dolerite fragments were entrapped in the CR magma. In contrast, the high degree of welding between the dolerite clasts and the CR basaltic matrix in the strongly welded magmatic breccias provides a snapshot of subvolcanic intrusions of the CR basalt into the dolerite when, after a 2-month break in activity, CR magmas started to rise again to the summit craters. Blocks similar to these subvolcanic ejecta of 5 April 2003 were also erupted during previous paroxysms (e.g., 1930) suggesting that changes in the usual Strombolian activity (e.g., short breaks in the persistent mild explosions and/or flank effusive activity) lead to transient crystallization of dolerites in the shallow plumbing system.
    Description: Published
    Description: 795-813
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Basalt ; Subvolcanic crystallization ; Dolerite ; Magmatic breccia ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-03
    Description: Si tratta dei pannelli realizzati per la mostra
    Description: Vulcani: Esplosioni ed effusioni Festival della Scienza di Genova 2007 Palazzo Ducale – Sottoporticato, Genova Una nuova mostra interattiva delll’Istituto Nazionale di Geofisica e Vucanologia, alla scoperta dei segreti del nostro pianeta e del mondo spettacolare dei vulcani. Organizzato come un “racconto”, è un lungo viaggio dalla nascita Terra ad oggi che aiuta a comprendere il ruolo fondamentale dei vulcani nella storia del nostro pianeta. Inizia con una proiezione 3d seguita da un filmato spettacolare e coinvolgente di eruzioni vulcaniche. Nella mostra si incontrano poi un grande modello di vulcano che può essere “acceso” in modalità interattiva, producendo un’eruzione esplosiva con gran fragore, sezioni di vulcano per scoprire “cosa c’è sotto”, plastici associati ad una speciale proiezione che permette di visualizzare sia l’eruzione sia l’interno del vulcano. E ancora rocce vulcaniche e un laboratorio per esperienze guidate, per capire il meccanismo che provoca l’eruzione, studiando il legame tra gas, pressione ed esplosione, anche utilizzando ulteriori modellini di vulcano. Il fatto che spesso le eruzioni vulcaniche siano accompagnate da attività sismica ci introduce alla parte finale della mostra, dedicata ai terremoti. L’obiettivo complessivo della mostra è quello di comunicare e far comprendere l’importanza del lavoro di ricerca e di controllo che svolge l’INGV e il riflesso che questo ha nella vita di ciascuno di noi. Si tratta, in sostanza, di “raccontare” le attività scientifiche svolte dall’Istituto inquadrandole dal punto di vista del visitatore.
    Description: Con i contributi dell’Associazione per il Festival della Scienza e del Dipartimento della Protezione Civile
    Description: Published
    Description: 5.8. TTC - Formazione e informazione
    Description: reserved
    Keywords: Mostra Vulcani ; Festival della Scienza di Genova 2007 ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: web product
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The 5 April 2003 explosive eruption at Stromboli emplaced typical basaltic scoria, pumice, and lithic blocks. This paper reports a detailed set of mineralogical, geochemical, and isotopic data on the juvenile ejecta and fresh subvolcanic blocks, including micro-Sr isotope analyses and major and dissolved volatile element contents in olivine-hosted melt inclusions. The juvenile ejecta have compositions similar to those of their analogs from previous paroxysms; the 2003 pumice, however, does not contain stable high-MgO olivine, usually typical of large-scale paroxysms and has lower compatible element contents. Texture, composition, and Sr isotope disequilibrium of crystals in pumice indicate that most of them are inherited from the shallow crystal-rich magma and/or crystal mush. The most primitive magma is recorded as rare melt inclusion in olivine Fo85–86. It has a typical S/Cl (1.1) and a total volatile content of 3.1 wt % from which the total fluid pressure was evaluated ≥240 MPa. Hence, moderate pressure conditions can be envisaged for the mechanism triggering the April 2003 paroxysm. The subvolcanic blocks are shoshonitic basalts with 45–50 vol % of phenocrysts (plagioclase + clinopyroxene + olivine). The late-stage crystallization of the crystal-rich magma lead to the formation of Na-sanidine with plagioclase An60–25 + olivine Fo68–49 + Timagnetite ± apatite ± phlogopite ± ilmenite assemblage. Mineralogy, chemistry, and Sr–Nd isotopic signatures of the subvolcanic blocks indicate they represent the slowly cooled equivalents of batches of crystal-rich basaltic magma stored in the uppermost subvolcanic feeding system. Cooling might be facilitated by short breaks in the summit crater activity.
    Description: Unpublished
    Description: 17
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: open
    Keywords: Stromboli volcano ; Paroxysmal activity ; Basaltic pumice ; Volatile content ; Mineralogy ; Geochemistry ; Sr isotope ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Pantelleria Island, located in the Sicily Channel Rift Zone (Italy), is the type locality for the peralkaline rhyolitic rocks called pantellerites. In the last 50 ka, after the large Green Tuff caldera-forming eruption, volcanic activity at Pantelleria has consisted of effusive and explosive eruptions mostly vented inside and along the rim of the caldera and producing silicic lava flows, lava domes and poorly dispersed pantelleritic pumice fall deposits. Basaltic cinder cones and lava flows are only present outside the caldera in the NW sector of the island. The most recent basaltic (Cuddie Rosse, 20 ka) and pantelleritic (Cuddia Randazzo and Cuddia del Gallo, 6 ka) pyroclastic products were sampled to investigate magmatic volatile contents through the study of melt inclusions. The melt inclusions in pyroxene and olivine phenocrysts of Cuddie Rosse scoriae have an alkali basalt composition. The dissolved volatiles comprise 0.9–1.6 wt.% H2O, several hundred ppm of CO2, 1600–2000 ppm of sulphur and 500–900 ppm of chlorine. The water–carbon dioxide couple gives a confining pressure 2 kbar prior to the eruption. This result indicates that episodes of magma ponding and crystallization occurred in the upper crust prior to eruption. The melt inclusions in feldspar, fayalite and aenigmatite phenocrysts of Cuddia del Gallo and Cuddia Randazzo pumice have a pantelleritic composition (Agpaitic Indices 1.3–2.1), up to 4.4 wt.% H2O, 8700 ppm Cl, 6000 ppm F, and CO2 below the detection limit. Sulphur averaging 420 ppm has been measured in Cuddia Randazzo melt inclusions. These data indicate relatively high volatile contents for these low-energy Strombolian-type eruptions. Melt inclusions in Cuddia del Gallo pumice show the most evolved composition (Agpaitic Indices 2–2.1) and the highest volatile content, in agreement with fluid saturation conditions in the magma chamber prior to the eruption. This implies a confining pressure of 1 kbar for the top of the pantelleritic reservoir. The composition of melt inclusions and mineralogical assemblage of Cuddia Randazzo pumice indicate that it has a lower evolutionary degree (Agpaitic Indices 1.3–1.8) and lower pre-eruptive Cl and H2O contents than Cuddia del Gallo pumice. An increase in pressure due to the exsolution of volatiles in the upper part of the pantelleritic reservoir may have triggered the Cuddia del Gallo explosive eruption. Evidence of widespread pre-eruptive mingling between trachytes and pantellerites suggests that the intrusion of trachytic magma into the pantelleritic reservoir likely played a major role in destabilizing the magma system just prior to the Cuddia Randazzo event.
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Pantelleria ; peralkaline ; volatiles ; melt inclusions ; eruptive style ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-24
    Description: Samples of scoriae erupted at Stromboli volcano during its persistent strombolian activity were collected between 2005 and 2008. Chemical and mineralogical compositions were obtained on products erupted from the three main crater sectors (SW, Central and NE). Small chemical variations indicate a different degree of evolution coupled with small difference of magma temperature 〈10°C. Analysis of the acoustic data for the same time period as the scoria sampling, indicates that puffing (a persistent overpressurized bubble degassing) was, on average, mainly observed at the central craters and at times moved to the NE sector. The cross-check of the two independent data sets allowed us to assess correlation between composition of products and puffing activity at vents. The hotter products are always erupted from the vents where puffing occurs indicating that slightly higher temperature can be the expression of an enhanced two-phase bubble flow dynamics.
    Description: Published
    Description: L08305
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; glass chemistry ; infrasound ; conduit dynamics ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Textural and mineralogical study of high-temperature, angular blocks erupted during the Stromboli explosion of 15 March 2007 was used to make inferences on the nature and thermal state of rocks forming the subsurface of the volcano' summit crater terrace. The studied ejecta consist of lapilli tuff that formed as a result of the transformation and high temperature induration (sintering) of the basaltic scoriae, lapilli and ash originally accumulated as loose tephra during the current activity of the volcano. The main processes leading to the tephra transformation were investigated through microstructural observations, mineral and glass analyses (SEM-EDS and EMP analyses). Investigations revealed that subsolidus reactions and partial melting of the tephra occurred, at temperatures higher than 600 °C and under variable fO2 conditions from QFM to HM buffering curves. In some blocks, evidence of high-T reheating and partial melting at the expense of secondary hydrothermal minerals was also observed. In order to track the subsolidus reheating history of the basaltic pyroclasts, a detailed study of the pseudomorphic phases and reactions after olivine, driven by iron oxidation under high-T conditions, was performed. The observed mineralogical transformation suggests that the lapilli tuff material, originating from the burial of tephra routinely accumulated by persistent Strombolian explosions within the crater terrace, were in some cases altered by the circulation of acidic fluids and were in any case reheated due to isotherm rise forced by high heat flux and gas streaming delivered by the underlying magma system. It is worth noting that the ejection of these unusual volcanic lithotypes was possible because a few days before the 15 March 2007 event, the craters were clogged with lapilli tuff material that slid into the crater bottom between 7 and 9 March. Findings of this study suggest that the scattered permanently active vents and shallow conduits of Stromboli are surrounded sideways and underneath the crater terrace, by a fairly large volume of high temperature rocks with variable degree of compaction, sintering up to partially melted. Such a spectrum of rock types is in good agreement with the conceptual model of prominent thermal zoning all around (sideway and upwards) the active magmatic system. We speculate that continuous migration upwards of isotherms led to transformation and partial melting of the normal Strombolian tephra.
    Description: Istituto Nazionale di Geofisica e Vulcanologia (INGV); Department of Civil Protection (DPC)
    Description: Published
    Description: 37-52
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Basalt ; Pyroclast ; Subsolidus reaction ; Hydrothermal alteration ; Pyrometamorphism ; Stromboli ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: This study focuses on a pyroclastic sequence related to a large-scale paroxysm that occurred during the seventeenth century ad and which can be considered one of the most powerful and hazardous explosive events at the volcano in the past few centuries. Paroxysms are energetic, short-lived explosions which sporadically interrupt normal Strombolian activity at Stromboli and commonly erupt a deep-derived, volatile-rich crystal-poor high-potassium basalt (“low porphyricity” (LP)), together with a shallow, degassed crystal-rich high-potassium to shoshonitic basalt (“high porphyricity” (HP)), which feed normal activity at the volcano. The studied deposit, crops out along the flanks of Sciara del Fuoco and, from base to top, consists of: (1) a layer of HP and LP ash and lapilli; (2) an unwelded layer of coarse HP lapilli and flattened dark scoriae; (3) weakly welded spatter made up of dense HP pyroclasts at the base, overlain by strongly vesicular LP clasts. The textural and chemical zoning of minerals and the glass chemistry of the LP products record repeated mafic recharge events, mixing with an old mushy body and episodes of rapid crystallization due to sudden degassing. Collapse of a foam layer originated by deep degassing probably triggered this large-scale, spatter-forming paroxysm. Decompression induced rapid degassing and vesiculation of the deep volatile-rich magma. The rapid ascent of the foamy magma blob pushed the shallow HP magma out and finally produced a fire fountain that emplaced the LP portion of the spatter.
    Description: Published
    Description: 1393-1406
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Explosive paroxysm ; Mineral zoning ; Magma evolution ; Eruption dynamics ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...