ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (2)
  • Vesuvius  (2)
  • 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring  (1)
  • 1
    Publikationsdatum: 2020-11-17
    Beschreibung: An efficient procedure is proposed in order to define realistic lower limits of velocity errors of a non-permanent GPS station (NPS), i.e. a station where the antenna is installed and operates for short time periods, typically 10-20 days per year. Moreover, the proposed method is aimed at being independent from the standard GPS data processing. The key is to appropriately subsample the coordinate time series of several continuous GPS stations (CGPSs) situated nearby or inside the considered NPS network, in order to simulate the NPS behavior and to estimate the velocity errors associated with the subsampling procedure. The obtained data are therefore used as lower limits to accept or correct the error estimates provided by standard data processing. The proposed approach is applied to data from the dense non-permanent network in the Central Apennine of Italy based on a sequence of solutions for the overlapping time spans 1999-2003, 1999-2004, 1999-2005 and 1999-2007. Both the original and error-corrected velocity patterns are used to compute the strain rate fields. The comparison between the corresponding results reveals large differences that could lead to divergent interpretations about the kinematics of the study area.
    Beschreibung: Published
    Beschreibung: 249–261
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Non-permanent GPS Stations ; Velocity Field ; Strain Rate ; Survey Optimization; ; Solution Sequence ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-03
    Beschreibung: Displacements or velocities obtained by GPS data processing over repeated surveys can provide useful information on tensional states of terrestrial crust, in those areas in which many stations well spatially distributed are present. In particular, the strain (or strain rate) can be computed over the nodes of a regular grid with suitable size to define a high density deformation field. A new method was deployed to generate easily and quickly the deformation pattern from GPS velocities and to evaluate the significance: values, related to an assigned grid point, can be truly considered only if the GPS stations are well distributed around it. The approach validation was performed by means of synthetic data derived from the theoretical displacement field generated by a Mogi model source. A complete analysis on the velocity pattern of the CaGeoNet network (Central Apennine chain, Italy) was performed providing strain rates and showing both extensional and compressive behaviour at the same values, along the Apennine chain axis.
    Beschreibung: Submitted
    Beschreibung: open
    Schlagwort(e): GPS velocity ; strain rate ; gridstrain software ; grid ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: manuscript
    Format: 362885 bytes
    Format: 785703 bytes
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-11-04
    Beschreibung: This work focuses on the use of terrestrial laser scanner (TLS) in the characterization of volcanic environments. A TLS survey of the Vesuvius crater (Somma-Vesuvius volcano, Italy) allows the construction of an accurate, georeferenced digital model of different sectors of the crater. In each sector, the intensity is computed for each point as the ratio between the emitted amplitude and the received one, normalized to the maximum signal, providing the radiometric information. Moreover, the RGB colours of the observed surfaces can be captured by means of a calibrated camera mounted on the TLS instrument. In this way, multi-band information is given, since a long range TLS operates in the near infrared band. The reflectance and RGB data are compared in order to verify if they are independent enough to be complementary for model analysis and inspection. Results show that the integration of RGB and intensity data can fully characterize this volcanic environment. The collected data are able to discriminate different volcanic deposits and to detect their stratigraphic features. In addition, our results shed light on the spatial extension of landslides and on the dimensions of rock fall/flow deposits affecting the inner walls of the crater. The remotely acquired TLS information from the Vesuvius crater is compared with that from a sedimentary terrain (coal-shale quarry) to detect possible similarities/differences between these two geological environments.
    Beschreibung: Published
    Beschreibung: 633-653
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: 3.5. Geologia e storia dei sistemi vulcanici
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Lidar ; Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.01. Computational geophysics::05.01.01. Data processing
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-04-04
    Beschreibung: Results of observations of the Mt. Vesuvius caldera, carried out by means of terrestrial laser scanning (TLS) in May 2005, October 2006 and June 2009, are reported here. In each survey the whole crater was acquired with 17/20 scans from 6 different viewpoints and the corresponding digital surface models were generated and registered into the UTM-WGS84 reference frame. In this way, a comparison between the multitemporal models leads to an evaluation of the occurred changes. The deformation maps, i.e. the contouring plots of the differences between the models along the direction of maximum variations, showed a progressive mass loss due to rock-falls from the NE vertical crater wall whose area was about 5000m2. The TLS data also showed the accumulation at the bottom. The volume loss which occurred from 2005 to 2009, was computed by subtraction of volumes defined with respect to reference planes parallel to the caldera walls and was estimated to be 20 300 m3. The volume uncertainties due to registration errors, subsampling noise effects, and effects due to choice of the reference plane, were also estimated. Some results were also interpreted on the basis of micro-seismic and meteorological data in order to plan a monitoring technique where seismic signals related to rock-fall and/or signals of intense rainfalls are used as alarms for fast TLS surveys able to characterize the corresponding changes of the caldera walls. The proposed methodology, in particular the simple but effective approach used in the estimation of volume uncertainties, can be applied to each rock slope instability phenomenon, regardless of the particular environment.
    Beschreibung: In press
    Beschreibung: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Terrestrial laser scanning ; 3D model ; Vesuvius ; Landslide ; volume ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2017-04-04
    Beschreibung: Monitoring damaged buildings in an area where an earthquake has occurred requires the use of techniques which provide rapid and safe measurements even in emergency conditions. In particular, remote sensing techniques like terrestrial laser scanning (TLS) can satisfy these requirements, since they produce very dense point clouds in little time and also allow an accurate geometric modeling of observed buildings. Nevertheless, strong constraints on TLS data acquisition geometry, such as acquisition distance and incidence angles, typically characterize an area in seismic emergency conditions. In order to correctly interpret the data, it is necessary to estimate errors affecting TLS measurements in these critical conditions. A reliable estimation can be achieved by means of experiments and numerical simulations aimed at quantifying a realistic noise level, with emphasis on reduction of artifacts due to data acquisition, registration and modeling. This paper proposes a data analysis strategy in which TLS-based morphological maps computed as point-to-primitive differences are created. The method can be easily used for accurate surveying in emergency conditions. In order to demonstrate the proposed method in very diverse situations, it was applied to rapidly detect deformation traces in the San Giacomo Roncole Campanile (Modena), the Asinelli tower (Bologna) and the Cantalovo Church (Verona), three buildings damaged by the Mw 5.9 Emilia Romagna 2012 earthquake (Italy). 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier
    Beschreibung: Published
    Beschreibung: 185-198
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Architecture ; Change Detection ; Laser Scanning ; Model ; Performance ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...