ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (11)
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems  (8)
  • Fluid geochemistry  (6)
Collection
  • 1
    Publication Date: 2021-06-16
    Description: This study performed the first assessment of the volcanic gas output from the Central Volcanic Zone (CVZ) of northern Chile. We present the fluxes and compositions of volcanic gases (H2O, CO2, H2, HCl, HF, and HBr) from five of the most actively degassing volcanoes in this region—Láscar, Lastarria, Putana, Ollagüe, and San Pedro—obtained during field campaigns in 2012 and 2013. The inferred gas plume compositions for Láscar and Lastarria (CO2/Stot = 0.9–2.2; Stot/HCl = 1.4–3.4) are similar to those obtained in the Southern Volcanic Zone of Chile, suggesting uniform magmatic gas fingerprint throughout the Chilean arc. Combining these compositions with our own UV spectroscopy measurements of the SO2 output (summing to ~1800 t d 1 for the CVZ), we calculate a cumulative CO2 output of 1743–1988 t d 1 and a total volatiles output of 〉20,200 t d 1. 1.
    Description: Published
    Description: 4961-4969
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Gas output from the Central Volcanic Zone ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Methane (CH4) emanating from a continental volcanichydrothermal system in Nisyros, Greece, is processed through the abiogenic reduction of mantle- and marine limestonederived CO2 [1]. Evidence for the occurrence of abiogenic hydrothermal reduction of CO2 is from the chemical and carbon isotopic equilibrium patterns. We have further characterized this abiogenic methane (C1) source for the concentrations of ethane (C2) and propane (C3), as well as for the hydrogen isotopic composition of CH4, H2O, H2 and H2S. C1/C2+ ratios are significantly higher than those typically observed for purely thermogenic sources. Hydrocarbon distribution ratios for other continental-hydrothermal sources rich in CO2 are comparable to those of the Nisyros fumaroles implying that abiogenic methane might be significantly more widespread than previously assumed [2]. Relative concentrations of hydrocarbons in continental-hydrothermal discharges are even indistinguishable from those measured in ultramafic hydrothermal emissions. The fact that redox conditions do not seem to exert any control on the relative concentrations of hydrocarbons in hydrothermal emissions in general, implies that the same two sources account for hydrocarbon production in continental and ultramafic environments. One source generates methane exclusively through the selective abiogenic reduction of CO2 (Sabatierreaction). The other source produces minor amounts of methane, ethane and propane by a random process and represents either the thermal cracking of organic matter or the polymerization starting from methane. Hydrogen isotope partitioning between H2O, H2S, H2 and CH4 in Nisyros fumaroles reveals that isotopic exchange rates are highest for H2O-H2S followed by H2O-H2. In contrast to H2 and H2S, the hydrogen isotopic composition of methane exhibits almost no local variations. This is in agreement with its predominantly abiogenic hydrothermal origin and with the low temperature sensitivity of the hydrogen isotope fractionation factor between water vapor and methane.
    Description: Published
    Description: Davos, Switzerland
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: hydrothermal gases ; methane ; ethane ; propane ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The chemistry of Yellowstone fumarole gases shows the existence of two component waters, type MC, influenced by the addition of deep mantle fluid, and type CC, influenced by crustal interactions (CC). MC is high in 3He/4He (22 Ra) and low in 4He/40Ar ( 1), reflecting input of deep mantle components. The other water is characterized by 4He concentrations 3–4 orders of magnitude higher than air-saturated meteoric water (ASW). These high He concentrations originate through circulation in Pleistocene volcanic rocks, as well as outgassing of Tertiary and older (including Archean) basement, some of which could be particularly rich in uranium, a major 4He source. Consideration of CO2–CH4–CO–H2O–H2 gas equilibrium reactions indicates equilibration temperatures from 170 C to 310 C. The estimated temperatures highly correlate with noble-gas variations, suggesting that the two waters differ in temperature. Type CC is 170 C whereas the MC is hotter, at 340 C. This result is similar to models proposed by previous studies of thermal water chemistry. However, instead of mixing the deep hot component simply with cold, meteoric waters we argue that addition of a 4He-rich component, equilibrated at temperatures around 170 C, is necessary to explain the range in fumarole gas chemistry.
    Description: Published
    Description: 265–278
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: hydrothermal fluids ; Yellowstone Plateau ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-09
    Description: Greece has a very complex geodynamic setting deriving from a long and complicat-ed geological history being characterized by intense seismic activity and enhanced geothermal gradient. This activity, with the contribution of an active volcanic arc, favours the existence of many gas manifestations. Depending on the prevailing gas species, the latter can be subdivided in three main groups: CO2-, N2- and CH4-dominated. In the present work, we focus on methane and light hydrocarbons (C2-C6) to define their origin. CH4 concentrations (〈2 to 915,200 μmol/mol) and isotop-ic ratios (δ13C -79.8 to +16.9 ‰, δD -298 to +264‰) cover a wide range of values indicating different origins and/or secondary post-genetic processes. Samples from gas discharged along the Ionian coast and in northern Aegean Sea have a prevail-ing microbial origin. Cold and thermal gas manifestations of central and northern Greece display a prevalent thermogenic origin. Methane in gases released along the active volcanic arc is prevailingly abiogenic, although thermogenic contributions cannot be excluded. Gases collected in the geothermal areas of Sperchios basin and northern Euboea are likely affected by strong secondary oxidation processes, as suggested by their highly positive C and H isotopic values (up to +16.9‰ and +264‰ respectively) and low C1/(C2+C3) ratios.
    Description: Submitted
    Description: Thessaloniki, Greece
    Description: 4V. Vulcani e ambiente
    Description: open
    Keywords: Hellenic territory ; hydrothermal gases ; cold gas emissions ; origin of hydrocarbon gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-09
    Description: Nisyros Island, Greece, is a stratovolcano known for its intense hydrothermal activity. On June 2013, during a multidisciplinary field campaign, soil samples were collected in the caldera area to determinate the main mineralogical assemblages and to investigate the distribution of trace element concentrations and the possible relationship to the contribution of fluids of deep origin. Soil samples were analysed with XRD and for the chemical composition of their leachable (deionized water) and pseudo total (microwave digestion) fraction both for major and trace elements. The results allow to divide the samples in 2 groups: Lakki Plain and Stefanos Crater. The latter, where a fumarolic area is located, shows a mineralogical assemblage dominated by phases typical of hydrothermal alteration. Their very low pH values (1.9 – 3.4) show the strong impact of fumarolic gases which are probably also the cause of strong enrichments in these soils of highly volatile elements like S, As, Se, Bi, Sb, Tl and Te.
    Description: Published
    Description: 2SR. VULCANI - Servizi e ricerca per la Società
    Description: JCR Journal
    Description: open
    Keywords: Trace elements ; Hydrothermal alteration ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-24
    Description: Hule and Rı´o Cuarto are maar lakes located 11 and 18 km N of Poa´s volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Rı´o Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon).
    Description: Published
    Description: e102456
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: bio activity, volcanic lakes, costa rica ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-09
    Description: On 3rd November 2002, at about 3 km off-shore of Panarea Island (Aeolian Islands, Southern Italy), a series of gas vents suddenly and violently opened from the seafloor at the depth of 10-15 m, with an unusually high gas flux and superimposing on the already existing submarine fumarolic field. Starting from the 12th November 2002 a discontinuous geochemical monitoring program was carried out. The emissions consisted in an emulsion whose liquid phase derived from condensation of an uprising vapor phase occurring close to the fluid outlets without significant contamination by seawater. The whole composition of the fluids was basically H2O- and CO2-dominated, with minor amounts of typical «hydrothermal» components (such as H2S, H2, CO and light hydrocarbons), atmospheric-related compounds, and characterized by the occurrence of a significant magmatic gas fraction (mostly represented by SO2, HCl and HF). According to the observed temporal variability of the fluid compositions, between November and December 2002 the hydrothermal feeding system was controlled by oxidizing conditions due to the input of magmatic gases. The magmatic degassing phenomena showed a transient nature, as testified by the almost complete disappearance of the magmatic markers in a couple of months and by the restoration, since January 2003, of the chemical features of the existing hydrothermal system. The most striking feature of the evolution of the «Panarea degassing event» was the relatively rapid restoration of the typical reducing conditions of a stationary hydrothermal system, in which the FeO/Fe1.5O redox pair of the rock mineral phases has turned to be the dominating redox controlling system.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Aeolian Islands ; Panarea ; submarine fumaroles ; gas chemistry ; geochemical monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1571798 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-09
    Description: A geochemical survey of 197 fluid discharges (cold and thermal waters and bubbling pools) and 15 gas emissions from the western sector of the Sabatini Volcanic District and the Tolfa Mountains (Latium, Central Italy) was carried out in 2007–2008. The chemical and isotopic compositions of the fluid discharges indicate the occurrence of two main sources: 1) relatively shallow aquifers with Ca(Na,K)–HCO3 and Ca(Mg)–HCO3 compositions when trapped in volcanic and sedimentary formations, respectively; and 2) a deep reservoir, which is hosted in the Mesozoic carbonate sequence, rich in CO2 and having a Ca–SO4(HCO3) composition. Dissolution of a CO2-rich gas phase into the shallow aquifers produces high-TDS and high-pCO2 cold waters, while oxidation of deep-derived H2S to SO4 2− generates low-pH (b4) sulfate waters. The δ13C–CO2 values for gas emissions (from−2.8 to+2.7‰vs. VPDB) suggest that the origin of CO2 associated with the deep fluids ismainly related to thermo-metamorphic reactions within the carbonate reservoir, although significant mantle contribution may also occur. However, R/Ra values (0.37–0.62) indicate that He is mainly produced by a crustal source, with a minor component from a crust-contaminated mantle. On the basis of the δ13C–CH4 and δD–CH4 values (from −25.7 to −19.5‰ vs. VPDB and from −152 to −93.4‰ vs. VSMOW, respectively) CH4 production is associated with thermogenic processes, possibly related to abiogenic CO2 reduction within the carbonate reservoir. The δ34S–H2S values (from+9.3 to +10.4‰ vs. VCDT) are consistent with the hypothesis of a sedimentary source of sulfur from thermogenic reduction of Triassic sulfates. Geothermometric evaluations based on chemical equilibria CO2–CH4 and, separately, H2S suggest that the reservoir equilibriumtemperature is up to ~300 °C. The δDand δ18O data indicate thatwater recharging both the shallow and deep aquifers has a meteoric origin. Fluid geochemistry, coupled with gravimetric data and tectonic lineaments, supports the idea that significant contributions from a deep-seated geothermal brine are present in the Stigliano thermal fluid discharges. Exploration surveys investigated this area during 70's–90's for geothermal purposes. Nevertheless, presently the area is still under-exploited. The presence of thermal waters and anomalous heat flow together with the demographic growth of the last years,makes this site a suitable location for direct applications of the geothermal resource.
    Description: Published
    Description: 160-181
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemistry Water Gas Stable isotope Geothermometry Central Italy ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-09
    Description: Geological storage is presently one of the most promising options for reducing anthropogenic emissions of CO2. Among the several projects investigating the fate of CO2 stored at depth, the EnCana's CO2 injection EOR (Enhancing Oil Recovery) project at Weyburn (Saskatchewan, Canada) is the most important oil production development that hosts an international monitoring project. In the Weyburn EOR Project CO2 is used to increase recovery of heavy oil from the Midale Beds, a Mississippian reservoir consisting of shallow marine carbonate, where about 3 billions standard m3 of supercritical CO2 have been injected since 2000 with an injection rate of 5000 ton/day. In this work the available dataset (bulk mineralogy of the reservoir, gas-cap composition and selected preand post-CO2 injection water samples) provided by the International Energy Agency Weyburn CO2 Monitoring & Storage Project has been used in order to: i) reconstruct the pre-injection reservoir chemical composition (including pH and the boundary conditions at 62 °C and 15 MPa); ii) assess the evolution of the reservoir subjected to CO2 injection and predict dissolution/precipitation processes of the Weyburn brines over 100 years after injection; iii) validate the short-term (September 2000–2003) evolution of the in situ reservoir fluids due to the CO2 injection, by comparing the surface analytical data with the composition of the computed depressurized brines. To achieve these goals the PRHEEQC (V2.14) Software Package was used with both modified thermodynamic database and correction for supercritical CO2 fugacity. The oil–gas–water interaction and the non-ideality of the gas phase (with exception of CO2) were not considered in the numerical simulations. Despite intrinsic limitations and uncertainties of geochemical modeling, the main results can be summarized, as follows: 1) the calculated pre-injection chemical composition of the Midale Beds brine is consistent with the analytical data of the waters collected in 2000 (baseline survey), 2) the main reservoir reactions (CO2 and carbonate dissolution) take place within the first year of simulation, 3) the temporal evolution of the chemical features of the fluids in the Weyburn reservoir suggests that CO2 can safely be stored by solubility (as CO2(aq)) and mineral trapping (via dawsonite precipitation). The short-term validation performed by calculating chemical composition of the reservoir fluids (corrected for surface conditions) after the simulation of 3 years of CO2 injection is consistent (error ≤5%) with the analytical data of the wellhead water samples collected in 2003, with the exception of Ca and Mg (error N90%), likely due to complexation effect of carboxilic acid.
    Description: Published
    Description: 181-197
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: partially_open
    Keywords: CO2 ; Geochemical modeling ; geological storage ; Fluid geochemistry ; EOR Weyburn Oil Field Brines ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-09
    Description: A geochemical survey of the main thermal waters discharging in the southwestern part of the Domuyo volcanic complex (Argentina),where the latest volcanic activity dates to 0.11 Ma, has highlighted the extraordinarily high heat loss from this remote site in Patagonia. The thermal water discharges are mostly Na-Cl in composition and have TDS values up to 3.78 g L−1 (El Humazo). A simple hydrogeochemical approach shows that 1,100 to 1,300 kg s−1 of boiling waters, which have been affected by shallow steam separation, flow into the main drainage of the area (Rio Varvarco). A dramatic increase of the most conservative species such as Na, Cl and Li from the Rio Varvarco fromupstreamto downstreamwas observed and related solely to the contribution of hydrothermal fluids. The equilibrium temperatures of the discharging thermal fluids, calculated on the basis of the Na-K-Mg geothermometer, are between 190 °C and 230 °C. If we refer to a liquid originally at 220 °C (enthalpy = 944 J g−1), the thermal energy release can be estimated as high as 1.1±0.2 GW, a value that ismuch higher than the natural release of heat in other important geothermal fields worldwide, e.g., Mutnovsky (Russia), Wairakei (New Zealand) and Lassen Peak (USA). This value is the second highest measured advective heat flux from any hydrothermal system on Earth after Yellowstone.
    Description: Published
    Description: 71–77
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Domuyo volcano ; Argentine Patagonia ; Geothermal potential ; Water geochemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...