ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-12-18
    Description: Mechanosensitive ion channels play a critical role in transducing physical stresses at the cell membrane into an electrochemical response. The MscL family of large-conductance mechanosensitive channels is widely distributed among prokaryotes and may participate in the regulation of osmotic pressure changes within the cell. In an effort to better understand the structural basis for the function of these channels, the structure of the MscL homolog from Mycobacterium tuberculosis was determined by x-ray crystallography to 3.5 angstroms resolution. This channel is organized as a homopentamer, with each subunit containing two transmembrane alpha helices and a third cytoplasmic alpha helix. From the extracellular side, a water-filled opening approximately 18 angstroms in diameter leads into a pore lined with hydrophilic residues which narrows at the cytoplasmic side to an occluded hydrophobic apex that may act as the channel gate. This structure may serve as a model for other mechanosensitive channels, as well as the broader class of pentameric ligand-gated ion channels exemplified by the nicotinic acetylcholine receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, G -- Spencer, R H -- Lee, A T -- Barclay, M T -- Rees, D C -- GM18486/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2220-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, 147-75CH, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856938" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Cell Membrane/chemistry ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; *Escherichia coli Proteins ; *Ion Channel Gating ; Ion Channels/*chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mycobacterium tuberculosis/*chemistry ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-20
    Description: The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 +/- 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 +/- 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quintana, Elisa V -- Barclay, Thomas -- Raymond, Sean N -- Rowe, Jason F -- Bolmont, Emeline -- Caldwell, Douglas A -- Howell, Steve B -- Kane, Stephen R -- Huber, Daniel -- Crepp, Justin R -- Lissauer, Jack J -- Ciardi, David R -- Coughlin, Jeffrey L -- Everett, Mark E -- Henze, Christopher E -- Horch, Elliott -- Isaacson, Howard -- Ford, Eric B -- Adams, Fred C -- Still, Martin -- Hunter, Roger C -- Quarles, Billy -- Selsis, Franck -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):277-80. doi: 10.1126/science.1249403.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744370" target="_blank"〉PubMed〈/a〉
    Keywords: Earth (Planet) ; Exobiology ; Extraterrestrial Environment ; *Planets ; *Stars, Celestial ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...