ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Mycorrhizae/genetics/isolation & purification/physiology  (1)
  • Animals  (1)
  • ddc:551.6  (1)
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2023-11-24
    Description: This study investigates the impact of increased global warming on heat stress changes and the potential number of people exposed to heat risks over Africa. For this purpose a heat index has been computed based on an ensemble‐mean of high‐resolution regional climate model simulations from the Coordinated Output for Regional Evaluations embedded in the COordinated Regional Climate Downscaling EXperiment, under two Representative Concentration Pathways (RCPs) scenarios (RCP2.6 and RCP8.5), combined with projections of population growth developed based on the Shared Socioeconomic Pathways (SSPs) scenarios (SSP1 and SSP5). Results show that by the late 21st century, the increased global warming is expected to induce a 12‐fold increase in the area extent affected by heat stress of high‐risk level. This would result in an increase of about 10%–30% in the number of days with high‐risk heat conditions, as well as about 6%–20% in their magnitude throughout the seasonal cycle over West, Central, and North‐East Africa. Therefore, and because of the lack of adaptation and mitigation policies, the exacerbation of ambient heat conditions could contribute to the exposure of about 2–8.5 million person‐events to heat stress of high‐risk level over Burkina Faso, Ghana, Niger, and Nigeria. Furthermore, it was found that the interaction effect between the climate change and population growth seems to be the most dominant in explaining the total changes in exposure due to moderate and high heat‐related risks over all subregions of the African continent.
    Description: Plain Language Summary: This study investigates the impact of increased global warming on heat stress changes and the potential number of persons likely to be exposed to heat risks over Africa. Results show that by the end of the 21st century, the increased global warming is expected to induce a 12‐fold increase in the total area affected by dangerous heat conditions over the continent. This would result in an increase of about 10%–30% in the number of days with these heat conditions, as well as about 6%–20% in their magnitude throughout the seasonal cycle over West, Central and North‐East Africa. Therefore, because of the lack of adaptation and mitigation policies, the exacerbation of ambient heat conditions could contribute to the exposure of about 2–8.5 million person‐events to heat stress of high‐risk level over Burkina Faso, Ghana, Niger, and Nigeria. Since these heat events would be partly driven by interactions effects between climate change and population growth, efficient measures allowing not only to mitigate the increased greenhouse gas emissions, but also the effects of high heat on the human body must be urgently implemented on the affected countries' scale, in order to significantly decrease the vulnerability of their populations to potential heat‐related health problems.
    Description: Key Points: Increased global warming induces more spatially and temporally widespread extreme heat events over West, Central and North‐East Africa. Populations of some West African countries are projected to be particularly exposed to moderate and high heat conditions. Change in population exposure to dangerous heat categories is mainly driven by the interaction effect between climate and population growth.
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: Projekt DEAL
    Description: https://esg-dn1.nsc.liu.se/search/cordex/
    Description: https://esgf-data.dkrz.de/projects/esgf-dkrz/
    Description: https://www.isimip.org/gettingstarted/details/31
    Description: https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-8th-pop-base-year-projection-ssp-2000-2100-rev01/data-download
    Description: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
    Keywords: ddc:551.6 ; Africa ; climate change ; heat stress index ; global warming
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-01
    Description: The global biogeography of microorganisms remains largely unknown, in contrast to the well-studied diversity patterns of macroorganisms. We used arbuscular mycorrhizal (AM) fungus DNA from 1014 plant-root samples collected worldwide to determine the global distribution of these plant symbionts. We found that AM fungal communities reflected local environmental conditions and the spatial distance between sites. However, despite AM fungi apparently possessing limited dispersal ability, we found 93% of taxa on multiple continents and 34% on all six continents surveyed. This contrasts with the high spatial turnover of other fungal taxa and with the endemism displayed by plants at the global scale. We suggest that the biogeography of AM fungi is driven by unexpectedly efficient dispersal, probably via both abiotic and biotic vectors, including humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davison, J -- Moora, M -- Opik, M -- Adholeya, A -- Ainsaar, L -- Ba, A -- Burla, S -- Diedhiou, A G -- Hiiesalu, I -- Jairus, T -- Johnson, N C -- Kane, A -- Koorem, K -- Kochar, M -- Ndiaye, C -- Partel, M -- Reier, U -- Saks, U -- Singh, R -- Vasar, M -- Zobel, M -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):970-3. doi: 10.1126/science.aab1161.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia. ; Centre for Mycorrhizal Research, The Energy and Resources Institute (TERI), India Habitat Centre, Lodhi Road, New Delhi 110 003, India. ; Laboratoire des Symbioses Tropicales et Mediterraneennes, Unite Mixte de Recherche 113, Laboratoire de Biologie et Physiologie Vegetales, Faculte des Sciences Exactes et Naturelles, Universite des Antilles, BP 592, 97159, Pointe-a-Pitre, Guadeloupe (French West Indies). ; Laboratoire Commun de Microbiologie de l'Institut de Recherche pour le Developpement-Institut Senegalais de Recherches Agricoles-Universite Cheikh Anta Diop (UCAD), Departement de Biologie Vegetale, UCAD, BP 5005 Dakar, Senegal. ; Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia. Institute of Botany, Czech Academy of Sciences, Dukelska 135, 379 01 Trebon, Czech Republic. ; School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011-5694, USA. ; Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia. Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands. ; TERI-Deakin Nano Biotechnology Centre, Biotechnology and Management of Bioresources Division, TERI, India Habitat Centre, Lodhi Road, New Delhi 110 003, India.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315436" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; DNA, Fungal/analysis ; *Ecosystem ; Environment ; Humans ; *Mycorrhizae/genetics/isolation & purification/physiology ; Phylogeny ; Phylogeography ; Plant Roots/*microbiology ; *Symbiosis ; Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...