ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Cell Differentiation  (1)
  • Cytokinesis  (1)
  • Homeodomain Proteins/genetics/metabolism  (1)
  • Mice  (1)
  • Seismology  (1)
  • 1
    Publication Date: 2013-03-23
    Description: Developmental signals such as Wnts are often presented to cells in an oriented manner. To examine the consequences of local Wnt signaling, we immobilized Wnt proteins on beads and introduced them to embryonic stem cells in culture. At the single-cell level, the Wnt-bead induced asymmetric distribution of Wnt-beta-catenin signaling components, oriented the plane of mitotic division, and directed asymmetric inheritance of centrosomes. Before cytokinesis was completed, the Wnt-proximal daughter cell expressed high levels of nuclear beta-catenin and pluripotency genes, whereas the distal daughter cell acquired hallmarks of differentiation. We suggest that a spatially restricted Wnt signal induces an oriented cell division that generates distinct cell fates at predictable positions relative to the Wnt source.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966430/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966430/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Habib, Shukry J -- Chen, Bi-Chang -- Tsai, Feng-Chiao -- Anastassiadis, Konstantinos -- Meyer, Tobias -- Betzig, Eric -- Nusse, Roel -- 102513/Wellcome Trust/United Kingdom -- GM063702/GM/NIGMS NIH HHS/ -- NS069375/NS/NINDS NIH HHS/ -- R01 GM030179/GM/NIGMS NIH HHS/ -- R01 GM063702/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1445-8. doi: 10.1126/science.1231077.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA. shabib@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520113" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Asymmetric Cell Division ; *Cell Differentiation ; Cells, Cultured ; Centrosome/physiology ; Cytokinesis ; Embryonic Stem Cells/*cytology/*metabolism ; Gene Expression ; Homeodomain Proteins/genetics/metabolism ; Mice ; Mitosis ; Octamer Transcription Factor-3/genetics/metabolism ; Pluripotent Stem Cells/physiology ; Recombinant Proteins/metabolism ; Single-Cell Analysis ; Transcription Factors/genetics/metabolism ; Wnt Proteins/metabolism ; *Wnt Signaling Pathway ; Wnt3A Protein/*metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-22
    Description: We present a new 3-D seismic model of the western United States crust derived from a joint inversion of Rayleigh-wave phase velocity and ellipticity measurements using periods from 8 to 100 s. Improved constraints on upper-crustal structure result from use of short-period Rayleigh-wave ellipticity, or Rayleigh-wave H/V (horizontal to vertical) amplitude ratios, measurements determined using multicomponent ambient noise cross-correlations. To retain the amplitude ratio information between vertical and horizontal components, for each station, we perform daily noise pre-processing (temporal normalization and spectrum whitening) simultaneously for all three components. For each station pair, amplitude measurements between cross-correlations of different components (radial–radial, radial–vertical, vertical–radial and vertical–vertical) are then used to determine the Rayleigh-wave H/V ratios at the two station locations. We use all EarthScope/USArray Tranportable Array data available between 2007 January and 2011 June to determine the Rayleigh-wave H/V ratios and their uncertainties at all station locations and construct new Rayleigh-wave H/V ratio maps in the western United States between periods of 8 and 24 s. Combined with previous longer period earthquake Rayleigh-wave H/V ratio measurements and Rayleigh-wave phase velocity measurements from both ambient noise and earthquakes, we invert for a new 3-D crustal and upper-mantle model in the western United States. Correlation between the inverted model and known geological features at all depths suggests good resolution in five crustal layers. Use of short-period Rayleigh-wave H/V ratio measurements based on noise cross-correlation enables resolution of distinct near surface features such as the Columbia River Basalt flows, which overlie a thick sedimentary basin.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...