ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crystallography, X-Ray  (5)
  • *Adhesins, Escherichia coli  (4)
  • Escherichia coli Proteins/*chemistry/*metabolism  (2)
  • 1
    Publication Date: 1999-08-14
    Description: Many Gram-negative pathogens assemble architecturally and functionally diverse adhesive pili on their surfaces by the chaperone-usher pathway. Immunoglobulin-like periplasmic chaperones escort pilus subunits to the usher, a large protein complex that facilitates the translocation and assembly of subunits across the outer membrane. The crystal structure of the PapD-PapK chaperone-subunit complex, determined at 2.4 angstrom resolution, reveals that the chaperone functions by donating its G(1) beta strand to complete the immunoglobulin-like fold of the subunit via a mechanism termed donor strand complementation. The structure of the PapD-PapK complex also suggests that during pilus biogenesis, every subunit completes the immunoglobulin-like fold of its neighboring subunit via a mechanism termed donor strand exchange.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sauer, F G -- Futterer, K -- Pinkner, J S -- Dodson, K W -- Hultgren, S J -- Waksman, G -- R01AI29549/AI/NIAID NIH HHS/ -- R01DK51406/DK/NIDDK NIH HHS/ -- R01GM54033/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 13;285(5430):1058-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10446050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Escherichia coli ; *Escherichia coli Proteins ; Fimbriae Proteins ; Fimbriae, Bacterial/chemistry/*metabolism/ultrastructure ; Models, Molecular ; Molecular Chaperones/*chemistry/*metabolism ; Molecular Sequence Data ; *Periplasmic Proteins ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-19
    Description: Bacteria that are engulfed by phagocytic cells of the immune system are usually destroyed once inside the host cell but not always. Why is it that sometimes engulfed bacteria survive and thrive quite happily inside the host cell? As Mulvey and Hultgren explain in their Perspective, the answer may lie in small indentations in the host cell plasma membrane called caveolae that direct certain signal transduction pathways inside the host cell (Shin et al.). If bacteria adhere to regions of the host cell surface that is rich in caveolae, they are better able to survive once inside the cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulvey, M A -- Hultgren, S J -- New York, N.Y. -- Science. 2000 Aug 4;289(5480):732-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110-1093, USA. mulvey@borcim.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10950716" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/metabolism ; *Adhesins, Escherichia coli ; Animals ; Antigens, CD/metabolism ; Bacterial Adhesion ; Caveolin 1 ; *Caveolins ; Cell Membrane/chemistry/*metabolism/microbiology/ultrastructure ; *Endocytosis ; Escherichia coli/*metabolism/pathogenicity ; *Fimbriae Proteins ; Glycosylphosphatidylinositols/metabolism ; Macrophages/microbiology ; Mast Cells/metabolism/*microbiology/ultrastructure ; Membrane Proteins/analysis ; Mice ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-08-14
    Description: Type 1 pili-adhesive fibers expressed in most members of the Enterobacteriaceae family-mediate binding to mannose receptors on host cells through the FimH adhesin. Pilus biogenesis proceeds by way of the chaperone/usher pathway. The x-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli at 2.5 angstrom resolution reveals the basis for carbohydrate recognition and for pilus assembly. The carboxyl-terminal pilin domain of FimH has an immunoglobulin-like fold, except that the seventh strand is missing, leaving part of the hydrophobic core exposed. A donor strand complementation mechanism in which the chaperone donates a strand to complete the pilin domain explains the basis for both chaperone function and pilus biogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choudhury, D -- Thompson, A -- Stojanoff, V -- Langermann, S -- Pinkner, J -- Hultgren, S J -- Knight, S D -- R01AI29549/AI/NIAID NIH HHS/ -- R01DK51406/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 13;285(5430):1061-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Uppsala Biomedical Center, Swedish University of Agricultural Sciences, Box 590, S-753 24 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10446051" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/*chemistry/metabolism ; *Adhesins, Escherichia coli ; Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/metabolism ; *Bacterial Proteins ; Chlorpropamide/analogs & derivatives/metabolism ; Crystallography, X-Ray ; Escherichia coli/*chemistry/metabolism/pathogenicity ; *Escherichia coli Proteins ; Fimbriae Proteins ; Fimbriae, Bacterial/chemistry/*metabolism/ultrastructure ; Hydrogen Bonding ; Membrane Proteins/*chemistry ; Models, Molecular ; Molecular Chaperones/*chemistry/metabolism ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-04-25
    Description: Virtually all uropathogenic strains of Escherichia coli, the primary cause of cystitis, assemble adhesive surface organelles called type 1 pili that contain the FimH adhesin. Sera from animals vaccinated with candidate FimH vaccines inhibited uropathogenic E. coli from binding to human bladder cells in vitro. Immunization with FimH reduced in vivo colonization of the bladder mucosa by more than 99 percent in a murine cystitis model, and immunoglobulin G to FimH was detected in urinary samples from protected mice. Furthermore, passive systemic administration of immune sera to FimH also resulted in reduced bladder colonization by uropathogenic E. coli. This approach may represent a means of preventing recurrent and acute infections of the urogenital mucosa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Langermann, S -- Palaszynski, S -- Barnhart, M -- Auguste, G -- Pinkner, J S -- Burlein, J -- Barren, P -- Koenig, S -- Leath, S -- Jones, C H -- Hultgren, S J -- R01DK51406/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1997 Apr 25;276(5312):607-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MedImmune, Inc., Gaithersburg, MD 20878, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9110982" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/*immunology/metabolism ; *Adhesins, Escherichia coli ; Animals ; Antibodies, Bacterial/analysis/immunology ; Bacterial Adhesion ; *Bacterial Vaccines/administration & dosage/immunology ; Child ; Cystitis/immunology/*prevention & control ; Epithelium/microbiology ; Escherichia coli/immunology/metabolism/pathogenicity ; Escherichia coli Infections/immunology/*prevention & control ; Female ; *Fimbriae Proteins ; Fimbriae, Bacterial/immunology ; Humans ; Immunity, Mucosal ; Mice ; Mice, Inbred C3H ; Neutrophils/immunology ; Rabbits ; Urinary Bladder/microbiology ; Vaccination ; *Vaccines, Synthetic/administration & dosage/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-11-20
    Description: Virtually all uropathogenic strains of Escherichia coli encode filamentous surface adhesive organelles called type 1 pili. High-resolution electron microscopy of infected mouse bladders revealed that type 1 pilus tips interacted directly with the lumenal surface of the bladder, which is embedded with hexagonal arrays of integral membrane glycoproteins known as uroplakins. Attached pili were shortened and facilitated intimate contact of the bacteria with the uroplakin-coated host cells. Bacterial attachment resulted in exfoliation of host bladder epithelial cells as part of an innate host defense system. Exfoliation occurred through a rapid apoptosis-like mechanism involving caspase activation and host DNA fragmentation. Bacteria resisted clearance in the face of host defenses within the bladder by invading into the epithelium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulvey, M A -- Lopez-Boado, Y S -- Wilson, C L -- Roth, R -- Parks, W C -- Heuser, J -- Hultgren, S J -- AI09787/AI/NIAID NIH HHS/ -- R01AI29549/AI/NIAID NIH HHS/ -- R01DK51406/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1494-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Microbial Pathogenesis, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822381" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/metabolism ; *Adhesins, Escherichia coli ; Amino Acid Chloromethyl Ketones/pharmacology ; Animals ; Apoptosis ; Bacterial Adhesion ; Caspase Inhibitors ; Caspases/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Cystitis/*microbiology/pathology ; DNA Fragmentation ; Escherichia coli/genetics/*pathogenicity ; Escherichia coli Infections/*microbiology/pathology ; Female ; *Fimbriae Proteins ; Fimbriae, Bacterial/physiology/ultrastructure ; In Situ Nick-End Labeling ; Membrane Glycoproteins/analysis/metabolism ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron ; Microscopy, Electron, Scanning ; Tetraspanins ; Urinary Bladder/chemistry/*microbiology/pathology ; Uroplakin Ib ; Urothelium/microbiology/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-04-13
    Description: Type 1 pili, produced by uropathogenic Escherichia coli, are multisubunit fibres crucial in recognition of and adhesion to host tissues. During pilus biogenesis, subunits are recruited to an outer membrane assembly platform, the FimD usher, which catalyses their polymerization and mediates pilus secretion. The recent determination of the crystal structure of an initiation complex provided insight into the initiation step of pilus biogenesis resulting in pore activation, but very little is known about the elongation steps that follow. Here, to address this question, we determine the structure of an elongation complex in which the tip complex assembly composed of FimC, FimF, FimG and FimH passes through FimD. This structure demonstrates the conformational changes required to prevent backsliding of the nascent pilus through the FimD pore and also reveals unexpected properties of the usher pore. We show that the circular binding interface between the pore lumen and the folded substrate participates in transport by defining a low-energy pathway along which the nascent pilus polymer is guided during secretion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673227/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673227/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geibel, Sebastian -- Procko, Erik -- Hultgren, Scott J -- Baker, David -- Waksman, Gabriel -- 85602/Medical Research Council/United Kingdom -- AI029549/AI/NIAID NIH HHS/ -- G0800002/Medical Research Council/United Kingdom -- G0800002(85602)/Medical Research Council/United Kingdom -- P41 GM103533/GM/NIGMS NIH HHS/ -- P41GM103533/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Apr 11;496(7444):243-6. doi: 10.1038/nature12007.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579681" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Fimbriae Proteins/*chemistry/*metabolism ; Fimbriae, Bacterial/chemistry/metabolism ; Models, Molecular ; Protein Conformation ; *Protein Folding ; Protein Stability ; Protein Transport ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-16
    Description: Curli are functional amyloid fibres that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria (predominantly of the alpha and gamma classes). They provide a fitness advantage in pathogenic strains and induce a strong pro-inflammatory response during bacteraemia. Curli formation requires a dedicated protein secretion machinery comprising the outer membrane lipoprotein CsgG and two soluble accessory proteins, CsgE and CsgF. Here we report the X-ray structure of Escherichia coli CsgG in a non-lipidated, soluble form as well as in its native membrane-extracted conformation. CsgG forms an oligomeric transport complex composed of nine anticodon-binding-domain-like units that give rise to a 36-stranded beta-barrel that traverses the bilayer and is connected to a cage-like vestibule in the periplasm. The transmembrane and periplasmic domains are separated by a 0.9-nm channel constriction composed of three stacked concentric phenylalanine, asparagine and tyrosine rings that may guide the extended polypeptide substrate through the secretion pore. The specificity factor CsgE forms a nonameric adaptor that binds and closes off the periplasmic face of the secretion channel, creating a 24,000 A(3) pre-constriction chamber. Our structural, functional and electrophysiological analyses imply that CsgG is an ungated, non-selective protein secretion channel that is expected to employ a diffusion-based, entropy-driven transport mechanism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268158/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268158/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goyal, Parveen -- Krasteva, Petya V -- Van Gerven, Nani -- Gubellini, Francesca -- Van den Broeck, Imke -- Troupiotis-Tsailaki, Anastassia -- Jonckheere, Wim -- Pehau-Arnaudet, Gerard -- Pinkner, Jerome S -- Chapman, Matthew R -- Hultgren, Scott J -- Howorka, Stefan -- Fronzes, Remi -- Remaut, Han -- R01 A1073847/PHS HHS/ -- R01 AI048689/AI/NIAID NIH HHS/ -- R01 AI073847/AI/NIAID NIH HHS/ -- R01 AI099099/AI/NIAID NIH HHS/ -- R56 AI073847/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Dec 11;516(7530):250-3. doi: 10.1038/nature13768. Epub 2014 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium [2] Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. ; 1] Unite G5 Biologie structurale de la secretion bacterienne, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France [2] UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; Structure et Fonction des Membranes Biologiques (SFMB), Universite Libre de Bruxelles, 1050 Brussels, Belgium. ; UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St Louis, Missouri 63110-1010, USA. ; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA. ; Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London WC1H 0AJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25219853" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/*secretion ; Biofilms ; Cell Membrane ; Crystallography, X-Ray ; Diffusion ; Entropy ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Lipoproteins/*chemistry/*metabolism ; Membrane Transport Proteins/metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Conformation ; Protein Transport
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-11-19
    Description: The assembly of different types of virulence-associated surface fibers called pili in Gram-negative bacteria requires periplasmic chaperones. PapD is the prototype member of the periplasmic chaperone family, and the structural basis of its interactions with pilus subunits was investigated. Peptides corresponding to the carboxyl terminus of pilus subunits bound PapD and blocked the ability of PapD to bind to the pilus adhesin PapG in vitro. The crystal structure of PapD complexed to the PapG carboxyl-terminal peptide was determined to 3.0 A resolution. The peptide bound in an extended conformation with its carboxyl terminus anchored in the interdomain cleft of the chaperone via hydrogen bonds to invariant chaperone residues Arg8 and Lys112. Main chain hydrogen bonds and contacts between hydrophobic residues in the peptide and the chaperone stabilized the complex and may play a role in determining binding specificity. Site-directed mutations in Arg8 and Lys112 abolished the ability of PapD to bind pilus subunits and mediate pilus assembly in vivo, an indication that the PapD-peptide crystal structure is a reflection of at least part of the PapD-subunit interaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuehn, M J -- Ogg, D J -- Kihlberg, J -- Slonim, L N -- Flemmer, K -- Bergfors, T -- Hultgren, S J -- AI07172/AI/NIAID NIH HHS/ -- R01AI29549/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 19;262(5137):1234-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7901913" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/*metabolism ; Base Sequence ; Chaperonins ; Crystallography, X-Ray ; *Escherichia coli Proteins ; Fimbriae, Bacterial/*metabolism ; Hydrogen Bonding ; Models, Molecular ; *Molecular Chaperones ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Peptide Fragments/chemistry/metabolism ; *Periplasmic Proteins ; Protein Conformation ; Protein Structure, Secondary ; Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...