ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • (3H) Tetracycline purification  (1)
  • Electron transfer flavoprotein  (1)
  • Escherichia coli  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 141 (1985), S. 260-265 
    ISSN: 1432-072X
    Keywords: (3H) Tetracycline purification ; Initial uptake kinetics ; Monophasic tetracycline uptake ; Tetracycline binding ; Temperature effect on tetracycline uptake ; Escherichia coli
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Experiments measuring the initial uptake of commercial (3H) tetracycline exhibit two distinct kinetic phases: a rapid phase followed by a slow phase. (3H) tetracycline purified by chromatography on a Dowex 50WX2 column exhibited only monophasic rapid uptake when tested with susceptible Escherichia coli cells. Cyanide inhibited the uptake of purified (3H) tetracycline only partially while transport of proline and maltose was entirely abolished. Energy independent accumulation of tetracycline may be accounted for by binding to cellular constituents. Uptake of tetracycline-as measured by inhibition of β-galactosidase synthesis-was strongly affected by a shift in temperature from 37°C to 21°C while carrier-mediated transport systems revealed only minor reductions. Taken together with the non-saturability of tetracycline uptake and the evidence for diffusion of tetracycline through phospholipid bilayers [Argast and Beck (1984) Antimicrob Agents Chemother 26:263–265] these data support the hypothesis that tetracycline enters the cytoplasm by diffusion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Bradyrhizobium japonicum ; Electron transfer flavoprotein ; etf Genes ; fix Genes ; Nitrogen fixation ; Phylogenetic tree ; Protein family
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A group of four co-regulated genes (fixA, fixB, fixC, fixX) essential for symbiotic nitrogen fixation has been described in several rhizobial species, includingBradyrhizobium japonicum. The complete nucleotide sequence of theB. japonicum fixA, fixB andfixC, genes is reported here. The derived amino acid sequences confirmed the previously noted sequence similarity between FixA and the β-subunit and between FixB and the α-subunit of mammalian andParacoccus denitrificans electron transfer flavoproteins (ETF). Since the classical role of ETF is in β-oxidation of fatty acids, a process unrelated to nitrogen fixation, we rationalized thatB. japonicum ought to contain bona fideetf genes in addition to theetf-like genesfixA andfixB. Therefore, we identified, cloned, sequenced, and transcriptionally analyzed theB. japonicum etfSL genes encoding the β-and α-subunits of ETF. TheetfSL genes, but not thefix genes, are transcribed in aerobically grown cells. An amino acid sequence comparison between all available ETFs and ETF-like proteins revealed the existence of two distinguishable subfamilies. Group I comprises housekeeping ETFs that link acyl-CoA dehydrogenase reactions with the respiratory chain, such as in the fatty acid degradation pathway.B. japonicum EtfS and EtfL clearly belong to this group. Group II contains ETF-like proteins that are synthesized only under certain specific growth conditions and receive electrons from the oxidation of specific substrates. The products of the anaerobically inducedfixA andfixB genes ofB. japonicum are members of that group.B. japonicum is the first example of an organism in which genes for proteins of both groups I and II of the ETF family have been identified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...