Skip to main content
Log in

Tetracycline uptake by susceptible Escherichia coli cells

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Experiments measuring the initial uptake of commercial (3H) tetracycline exhibit two distinct kinetic phases: a rapid phase followed by a slow phase. (3H) tetracycline purified by chromatography on a Dowex 50WX2 column exhibited only monophasic rapid uptake when tested with susceptible Escherichia coli cells. Cyanide inhibited the uptake of purified (3H) tetracycline only partially while transport of proline and maltose was entirely abolished. Energy independent accumulation of tetracycline may be accounted for by binding to cellular constituents. Uptake of tetracycline-as measured by inhibition of β-galactosidase synthesis-was strongly affected by a shift in temperature from 37°C to 21°C while carrier-mediated transport systems revealed only minor reductions. Taken together with the non-saturability of tetracycline uptake and the evidence for diffusion of tetracycline through phospholipid bilayers [Argast and Beck (1984) Antimicrob Agents Chemother 26:263–265] these data support the hypothesis that tetracycline enters the cytoplasm by diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCCP:

carbonyl cyanide m-chlorophenyl hydrazone

EDTA:

ethylenediaminetetraacetic acid

IPTG:

isopropyl-β-d-thiogalactopyranoside

NB:

nutrient broth

ONPG:

O-nitrophenyl-β-d-galactopyranoside

References

  • Argast M, Beck CF (1984) Tetracycline diffusion through phospholipid bilayers and binding to phospholipids. Antimicrob Agents Chemother 26:263–265

    PubMed  Google Scholar 

  • Ball PR, Shales SW, Chopra I (1980) Plasmid-mediated tetracycline resistance in Escherichia coli involves increased efflux of the antibiotic. Biochem Biophys Res Commun 93:74–81

    PubMed  Google Scholar 

  • Ball PR, Chopra I, Eccles SJ (1977) Accumulation of tetracyclines by Escherichia coli K-12. Biochem Biophys Res Commun 77:1500–1507

    PubMed  Google Scholar 

  • Chopra I, Eccles SJ (1978) Diffusion of tetracycline across the outer membrane of Escherichia coli K-12: Involvement of protein Ia. Biochem Biophys Res Commun 83:550–557

    PubMed  Google Scholar 

  • Chopra I, Ball PR (1982) Transport of antibiotics into bacteria. In: Rose AH, Morris JG (eds) Advances in microbial physiology, vol 23. Academic Press, New York, pp 184–240

    Google Scholar 

  • Clark PJ, Maaløe O (1967) DNA replication and the division cycle in Escherichia coli. J Mol Biol 23:99–112

    Google Scholar 

  • Colaizzi JL, Klink PR (1969) pH-Partition behaviour of tetracyclines. J Pharm Sci 58:1184–1189

    PubMed  Google Scholar 

  • Franklin TJ, Higginson B (1970) Active accumulation of tetracycline by Escherichia coli. Biochem J 116:287–297

    PubMed  Google Scholar 

  • George AM, Levy SB (1983) Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: Involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol 155:531–540

    PubMed  Google Scholar 

  • Goldman RA, Cooperman BS, Strycharz BA (1980) Photoincorporation of tetracycline into Escherichia coli ribosomes. FEBS Lett 118:113–118

    PubMed  Google Scholar 

  • Ingraham JL, Maaløe O, Neidhardt FC (1983) Growth of the bacterial cell. Sinauer Associates, Inc., Sunderland, Massachusetts

    Google Scholar 

  • Korzybski T, Kowszyk-Gindifer Z, Kurylowicz W (1978) Antibiotics. American Society of Microbiology, Washington, DC, pp 501–534

    Google Scholar 

  • Levy SB, McMurray L (1978) Plasmid-determined tetracycline-resistance involves new transport systems for tetracycline. Nature (Lond) 276:90–92

    Google Scholar 

  • Levy SB, McMurray L, Onigman P, Saunders RM (1977) Plasmid-mediated tetracycline resistance in Escherichia coli. In: Drews J, Högenauer G (eds) Topics in infectious diseases, vol 2. Springer, New York, pp 181–203

    Google Scholar 

  • McMurray L, Levy SB (1978) Two transport systems for tetracycline in sensitive Escherichia coli: Critical role for an initial uptake system insensitive to energy inhibitors. Antimicrob Agents Chemother 14:201–209

    PubMed  Google Scholar 

  • McMurray L, Petrucci RE, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci USA 77:3974–3977

    PubMed  Google Scholar 

  • McMurray L, Cullicane JC, Petrucci RE, Levy SB (1981) Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli. Antimicrob Agents Chemother 20:307–313

    PubMed  Google Scholar 

  • McMurray L, Aronson DA, Levy SB (1983) Susceptible Escherichia coli cells can actively excrete tetracycline. Antimicrob Agents Chemother 24:544–551

    PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Reynard AM, Nellis LF (1972) Uptake of tetracycline by Escherichia coli: Lack of binding of tetracycline to the uptake system. Biochem Biophys Res Commun 48:1129–1132

    PubMed  Google Scholar 

  • Rosen BP (1978) Bacterial transport. Marcel Dekker, New York

    Google Scholar 

  • Smith MCM, Chopra I (1983) Limitations of a fluorescence assay for studies on tetracycline transport into Escherichia coli. Antimicrob Agents Chemother 23:175–178

    PubMed  Google Scholar 

  • Smith MCM, Chopra I (1984) Energetics of tetracycline transport into Escherichia coli. Antimicrob Agents Chemother 25:446–449

    PubMed  Google Scholar 

  • Suarez G, Nathans D (1965) Inhibition of aminoacyl-sRNA binding to ribosomes by tetracycline. Biochem Biophys Res Commun 18:743–750

    Google Scholar 

  • Träuble H, Overath P (1973a) The structure of Escherichia coli studied by fluorescence measurements of lipid phase transitions. Biochim Biophys Acta 307:491–512

    PubMed  Google Scholar 

  • Träuble H, Overath P (1973b) Phase transitions in cells, membranes and lipids of Escherichia coli. Detection by fluorescent probes, light scattering and dilatometry. Biochemistry 12:2625–2634

    PubMed  Google Scholar 

  • Ullmann A, Perrin D (1970) Complementation in β-galactosidase. In: Beckwith JR, Zipser D (eds) The lactose operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 143–172

    Google Scholar 

  • Weckesser J, Magnuson JA (1976) Light-induced tetracycline accumulation by Rhodopseudomonas sphaeroides. J Supramol Struct 4:515–520

    PubMed  Google Scholar 

  • Weckesser J, Magnuson JA (1979) Light-induced, carrier-mediated transport of tetracycline in Rhodopseudomonas sphaeroides. J Bacteriol 138:678–683

    PubMed  Google Scholar 

  • Winkler HH, Wilson TH (1966) The role of energy coupling in the transport of β-galactosides by Escherichia coli. J Biol Chem 241:2200–2211

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argast, M., Beck, C.F. Tetracycline uptake by susceptible Escherichia coli cells. Arch. Microbiol. 141, 260–265 (1985). https://doi.org/10.1007/BF00408069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408069

Key words

Navigation