ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Key words Quantitative trait loci ; Resistance mechanism ; MSV ; Composite interval mapping ; Tropical maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The streak disease has a major effect on maize in sub-Saharan Africa. Various genetic factors for resistance to the virus have been identified and mapped in several populations; these factors derive from different sources of resistance. We have focused on the Réunion island source and have recently identified several factors in the D211 line. A second very resistant line, CIRAD390, was crossed to the same susceptible parent, B73. The linkage map comprised 124 RFLP markers, of which 79 were common with the D211×B73 map. A row-column design was used to evaluate the resistance to maize streak virus (MSV) of 191 F2:3 families under artificial infestation at two locations: Harare (Zimbabwe) and in Réunion island. Weekly ratings of resistance were taken and disease incidence and severity calculated. QTL analyses were conducted for each scoring date and for the integration over time of the disease scores, of incidence, and of severity. Heritability estimates (71–98%) were as high as for the D211×B73 population. Eight QTLs were detected on chromosomes 1, 2, 3, 5 (two QTLs), 6, 8, and 10. The chr1-QTL explained the highest proportion of phenotypic variation, about 45%. The QTLs on chromosomes 1, 2, and 10 were located in the same chromosomal bin as QTLs for MSV resistance in the D211×B73 population. In a simultaneous fit, QTLs explained together 43–67% of the phenotypic variation. The QTLs on chromosomes 3, 5, and 6 appeared to be specific for one or the other component of the resistance. For the chr3-QTL, resistance was contributed by the susceptible parent. There were significant QTL × environment interactions for some of the variables studied, but QTLs were stable in the two environments. They also appeared to be stable over time. Global gene action ranged from partial dominance to overdominance, except for disease severity. Some additional putative QTLs were also detected. The major QTL on chromosome 1 seemed to be common to the other sources of resistance, namely Tzi4, a tolerant line from IITA, and CML202 from CIMMYT. However, the distribution of the other QTLs within the genome revealed differences in Réunion germplasm and across these other resistance sources. This diversity is of great importance when considering the durability of the resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Biplot ; Factorial regression ; Genetic marker ; Genotype×environment interaction ; Quantitative trait loci ; Quantitative trait loci × environment interaction ; Partial least squares regression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  An understanding of the genetic and environmental basis of genotype×environment interaction (GEI) is of fundamental importance in plant breeding. In mapping quantitative trait loci (QTLs), suitable genetic populations are grown in different environments causing QTLs×environment interaction (QEI). The main objective of the present study is to show how Partial Least Squares (PLS) regression and Factorial Regression (FR) models using genetic markers and environmental covariables can be used for studying QEI related to GEI. Biomass data were analyzed from a multi-environment trial consisting of 161 lines from a F3:4 maize segregating population originally created with the purpose of mapping QTLs loci and investigating adaptation differences between highland and lowland tropical maize. PLS and FR methods detected 30 genetic markers (out of 86) that explained a sizeable proportion of the interaction of maize lines over four contrasting environments involving two low-altitude sites, one intermediate-altitude site, and one high-altitude site for biomass production. Based on a previous study, most of the 30 markers were associated with QTLs for biomass and exhibited significant QEI. It was found that marker loci in lines with positive GEI for the highland environments contained more highland alleles, whereas marker loci in lines with positive GEI for intermediate and lowland environments contained more lowland alleles. In addition, PLS and FR models identified maximum temperature as the most-important environmental covariable for GEI. Using a stepwise variable selection procedure, a FR model was constructed for GEI and QEI that exclusively included cross products between genetic markers and environmental covariables. Higher maximum temperature in low- and intermediate-altitude sites affected the expression of some QTLs, while minimum temperature affected the expression of other QTLs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Key words Tropical maize ; Transformation ; Plant regeneration ; Insect resistance ; Bacillus thuringiensis (Bt)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  To enhance the level of resistance to insects in tropical maize germplasm we have developed techniques to successfully transform elite tropical maize inbred based on the activity of specific cryI proteins against four major maize pests – corn earworm, fall armyworm, southwestern corn borer and sugarcane borer. Constructs containing cryIAb or cryIAc synthetic genes were used. To generate transgenic plants we have established methods for biolistic bombardment and the selection and regeneration of immature embryos and calli from the elite tropical lines CML72, CML216, CML323, CML327 and hybrids. Transgenic plants resistant to the herbicide BastaTM contained the bands for the cry, bar and gus genes as detected by Southern blot analyses. A simple leaf bioassay presented varying levels of resistance to Southwestern corn borer of transgenic tropical maize carrying the cryIAc gene. Analyses of the progenies confirmed the sexual transmission of the introduced genes and their stable expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 86 (1993), S. 975-984 
    ISSN: 1432-2242
    Keywords: Chemiluminescence ; Genotyping costs ; RAPD ; RFLP ; Zea mays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three molecular marker protocols, chemiluminescent restriction fragment length polymorphisms (c-RFLPs), radioactivity-based restriction fragment length polymorphisms (r-RFLPs), and randomly amplified DNA polymorphisms (RAPDs) were compared in terms of cost and time efficiency. Estimates of cost of supplies and time requirements were obtained from simulations of maize (Zea mays L.) genotyping experiments utilizing protocols currently in use. The increase in total cost with increasing numbers of individuals genotyped and markers analyzed is higher for RAPDs than for RFLPs. RAPDs were generally found to be more cost and time efficient for studies involving small sample sizes, while RFLPs have the advantage for larger sample sizes. Because of the shorter exposure times involved, c-RFLPs require less time than r-RFLPs to obtain a given amount of information. Variations in the protocols, such as number of re-uses of Southern blots or cost of Taq DNA polymerase per reaction of amplification, also affect the relative merits of RAPDs and RFLPs. Two examples were analyzed where molecular markers are used: a germ plasm survey and quantitative trait loci (QTL) mapping in a segregating population. No protocol was found to be the most cost and time efficient over the entire range of sample sizes and number of marker loci studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 92 (1996), S. 163-169 
    ISSN: 1432-2242
    Keywords: Key wordsBread wheat  ;  Triticum aestivum  ; Culture medium  ;  Embryogenic callus  ;  Plant regeneration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Forty-eight bread wheat (Triticum aestivum L.) released cultivars and elite advanced lines were evaluated for their ability to produce embryogenic callus using three different media. Basal N6 medium supplemented with dicamba (E1), MS medium containing 2,4-D (E3) or MS medium containing 2,4-D plus different amino acids (E5) were used for callus initiation and maintenance. Plant regeneration was achieved on basal MS medium with indole-3-acetic acid (IAA) and 6benzylamino purine (BAP) and rooting on MS with 1naphthaleneacetic acid (NAA). Percentage regeneration varied widely with both genotype and initiation medium, with values ranging from 2% to 94%. The number of plantlets produced per embryo ranged from 6 to 42. Thirteen genotypes showed at least 50% regeneration after culture on E5 medium; 3 genotypes after culture on E3 initiation medium and 1 after initiation on E1. After four subcultures, over a 16-week period, 41 genotypes (85%) lost their ability to regenerate plants while the remaining 7 lines (15%) retained plant regeneration potential but at reduced levels. E3 medium was found to be the best for maintaining regeneration potential after four subcultures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: Key words  Anthesis-silking interval  ;  Drought  ;  Quantitative trait loci  ;  RFLP  ;  Tropical maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract   Drought is an important climatic phenomenon which, after soil infertility, ranks as the second most severe limitation to maize production in developing countries. When drought stress occurs just before or during the flowering period, a delay in silking is observed, resulting in an increase in the length of the anthesis-silking interval (ASI) and in a decrease in grain yield. Selection for reduced ASI in tropical open-pollinated varieties has been shown to be correlated with improved yields under drought stress. Since efficient selection for drought tolerance requires carefully managed experimental conditions, molecular markers were used to identify the genomic segments responsible for the expression of ASI, with the final aim of developing marker-assisted selection (MAS) strategies. An F2 population of 234 individuals was genotyped at 142 loci and F3 families were evaluated in the field under several water regimes for male flowering (MFLW), male sterility (STER), female flowering (FFLW) and ASI. The genetic variance of ASI increased as a function of the stress intensity, and the broad-sense heritabilites of MFLW, FFLW and ASI were high under stress conditions, being 86%, 82% and 78%, respectively. Putative quantitative trait loci (QTLs) involved in the expression of MFLW and/or FFLW under drought were detected on chromosomes 1, 2, 4, 5, 8, 9 and 10, accounting for around 48% of the phenotypic variance for both traits. For ASI, six putative QTLs were identified under drought on chromosomes 1, 2, 5, 6, 8 and 10, and together accounted for approximately 47% of the phenotypic variance. Under water-stress conditions, four QTLs were common for the expression of MFLW and FFLW, one for the expression of ASI and MFLW, and four for the expression of ASI and FFLW. The number of common QTLs for two traits was related to the level of linear correlation between these two traits. Segregation for ASI was found to be transgressive with the drought-susceptible parent contributing alleles for reduced ASI (4 days) at two QTL positions. Alleles contributed by the resistant line at the other four QTLs were responsible for a 7-day reduction of ASI. These four QTLs represented around 9% of the linkage map, and were stable over years and stress levels. It is argued that MAS based on ASI QTLs should be a powerful tool for improving drought tolerance of tropical maize inbred lines.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2242
    Keywords: Anthesis-silking interval ; Drought ; Quantitative trait loci ; RFLP ; Tropical maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Drought is an important climatic phenomenon which, after soil infertility, ranks as the second most severe limitation to maize production in developing countries. When drought stress occurs just before or during the flowering period, a delay in silking is observed, resulting in an increase in the length of the anthesis-silking interval (ASI) and in a decrease in grain yield. Selection for reduced ASI in tropical open-pollinated varieties has been shown to be correlated with improved yields under drought stress. Since efficient selection for drought tolerance requires carefully managed experimental conditions, molecular markers were used to identify the genomic segments responsible for the expression of ASI, with the final aim of developing marker-assisted selection (MAS) strategies. An F2population of 234 individuals was genotyped at 142 loci and F3 families were evaluated in the field under several water regimes for male flowering (MFLW), male sterility (STER), female flowering (FFLW) and ASI. The genetic variance of ASI increased as a function of the stress intensity, and the broad-sense heritabilites of MFLW, FFLW and ASI were high under stress conditions, being 86%, 82% and 78%, respectively. Putative quantitative trait loci (QTLs) involved in the expression of MFLW and/or FFLW under drought were detected on chromosomes 1, 2, 4, 5, 8, 9 and 10, accounting for around 48% of the phenotypic variance for both traits. For ASI, six putative QTLs were identified under drought on chromosomes 1, 2, 5, 6, 8 and 10, and together accounted for approximately 47% of the phenotypic variance. Under water stress conditions, four QTLs were common for the expression of MFLW and FFLW, one for the expression of ASI and MFLW, and four for the expression of ASI and FFLW. The number of common QTLs for two traits was related to the level of linear correlation between these two traits. Segregation for ASI was found to be transgressive with the drought-susceptible parent contributing alleles for reduced ASI (4 days) at two QTL positions. Alleles contributed by the resistant line at the other four QTLs were responsible for a 7-day reduction of ASI. These four QTLs represented around 9% of the linkage map, and were stable over years and stress levels. It is argued that MAS based on ASI QTLs should be a powerful tool for improving drought tolerance of tropical maize inbred lines.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: Key words Maize ; Adaptation ; Tropical ; Highland and lowland ; QTL mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Molecular-marker loci were used to investigate the adaptation differences between highland and lowland tropical maize. An F2 population from the cross of two inbred lines independently derived from highland and lowland maize germplasm was developed, and extracted F3:4 lines were phenotype in replicated field trials at four thermally diverse tropical testing sites, ranging from lowland to extreme highland (mean growing season temperature range 13.2–24.6°C). Traits closely related with adaptation, such as biomass and grain yield, yield components, days from sowing to male and female flowering, total leaf number, plant height and number of primary tassel branches (TBN), were analyzed. A large line × environment interaction was observed for most traits. The genetic basis of this interaction was reflected by significant, but systematic, changes from lowland to highland sites in the correlation between the trait value and genomic composition (designated by the proportion of marker alleles with the same origin). Joint analysis of quantitative trait loci (QTLs) over sites detected 5–8 QTLs for each trait (except disease scores, with data only from one site). With the exception of one QTL for TBN, none of these accounted for more than 15% of the total phenotypic variation. In total, detected QTLs accounted for 24–61% of the variation at each site on average. For yield, yield components and disease scores, alleles generally favored the site of origin. Highland-derived alleles had little effect at lowland sites, while lowland-derived alleles showed relatively broader adaptation. Gradual changes in the estimated QTL effects with increasing mean site temperature were observed, and paralleled the observed patterns of adaptation in highland and lowland germplasm. Several clusters of QTLs for different traits reflected the relative importance in the adaptation differences between the two germplasm types, and pleiotropy is suggested as the main cause for the clustering. Breeding for broad thermal adaptation should be possible by pooling genes showing adaptation to specific thermal regimes, though perhaps at the expense of reduced progress for adaptation to a specific site. Molecular marker-assisted selection would be an ideal tool for this task, since it could greatly reduce the linkage drag caused by the unintentional transfer of undesirable traits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 92 (1996), S. 163-169 
    ISSN: 1432-2242
    Keywords: Bread wheat ; Triticum aestivum ; Culture medium ; Embryogenic callus ; Plant regeneration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Forty-eight bread wheat (Triticum aestivum L.) released cultivars and elite advanced lines were evaluated for their ability to produce embryogenic callus using three different media. Basal N6 medium supplemented with dicamba (E1), MS medium containing 2,4-D (E3) or MS medium containing 2,4-D plus different amino acids (E5) were used for callus initiation and maintenance. Plant regeneration was achieved on basal MS medium with indole-3-acetic acid (IAA) and 6-benzylamino purine (BAP) and rooting on MS with 1-naphthaleneacetic acid (NAA). Percentage regeneration varied widely with both genotype and initiation medium, with values ranging from 2% to 94%. The number of plantlets produced per embryo ranged from 6 to 42. Thirteen genotypes showed at least 50% regeneration after culture on E5 medium; 3 genotypes after culture on E3 initiation medium and 1 after initiation on E1. After four subcultures, over a 16-week period, 41 genotypes (85%) lost their ability to regenerate plants while the remaining 7 lines (15%) retained plant regeneration potential but at reduced levels. E3 medium was found to be the best for maintaining regeneration potential after four subcultures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2242
    Keywords: Key words Quantitative trait loci ; Disease resistance ; MSV ; Composite interval mapping ; Tropical maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Maize streak virus (MSV) disease may cause significant grain yield reductions in maize in Africa. Réunion island maize germplasm is a proven source of strong resistance. Its genetic control was investigated using 123 RFLP markers in an F2 population of D211 (resistant) × B73 (susceptible). This population of 165 F2:3 families was carefully evaluated in Harare (Zimbabwe) and in Réunion. Artificial infestation was done with viruliferous leafhoppers. Each plant was rated weekly six times after infestation on a 1–9 scale previously adjusted by image analysis. QTL analyses were conducted for each scoring date, and for the areas under the disease, incidence and severity progress curves. The composite interval mapping method used allowed the estimation of the additive and dominance effects and QTL × environment interactions. Heritabilities ranged from 73% to 98%, increasing with time after infestation. Resistance to streak virus in D211 was provided by one region on chromosome 1, with a major effect, and four other regions on chromosomes 2, 3 (two regions) and 10, with moderate or minor effects. Overall, they explained 48–62% of the phenotypic variation for the different variables. On chromosome 3, one of the two regions seemed to be more involved in early resistance, whereas the second was detected at the latest scoring date. Other QTLs were found to be stable over time and across environments. Mild QTL × environment interactions were detected. Global gene action appeared to be partially dominant, in favor of resistance, except at the earliest scoring dates, where it was additive. From this population, 32 families were chosen, representing the whole range of susceptibility to MSV. They were tested in Réunion against three MSV clones, along with a co-inoculation of two of them. Virulence differences between clones were significant. There were genotype × clone interactions, and these were more marked for disease incidence than for severity. Although these interactions were not significant for the mean disease scores, it is suggested that breeders should select for completely resistant genotypes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...